
Page 1 of 6

Computer Science Foundation Exam

 December 16, 2011

Section I B

SOLUTION

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Question # Max Pts Category Passing Score

1 10 ALS 7

2 10 DSN 7

3 10 DSN 7

4 10 ALG 7

5 10 ALG 7

TOTAL 50

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Fall 2011 Computer Science Exam, Part B

Page 2 of 6

1) (10 pts) ALS (Order Analysis)

(a) (4 pts) Determine the Big-O running time of the following code fragment. Do NOT use

summations for this problem. Simply analyze the code and give the Big-O running time in terms of the

variable n. YOU MUST EXPLAIN YOUR ANSWER.

An answer without explanation gets only 1 point.

int i, j, k, someValue = 0;

for(i = 1; i < 14*n*n; i++) {

 for(j = 1; j < 42*n*n*n*n*n; j++) {

 for(k = 1; k < n*n*n; k++) {

 someValue = someValue + 7;

 }

 }

}

Outer loop iterates n
2
 times (from i = 1 to 14n

2
).

Inner loop iterates n
5
 times (from j = 1 to 42n

5
).

Most inner loop iterates n
3
 times (from k = 1 to n

3
).

For each iteration of the inner loop, there is 1 operation (constant work).

So we have 14n
2
*42n

5
*n

3
, or O(n

10
).

(b) (6 pts) Write, but DO NOT solve, a summation that describes the number of multiplications

performed by the following code fragment, in terms of n.

weirdSum = 0;

for(i = 19; i < n + 292; i++) {

 weirdSum = weirdSum * 5 – i*2;

 for(j = i - 3; j < i + i + 19; j++) {

 weirdSum = weirdSum * n - j * 3 + i * j;

}

}

Solution:

291

19

182

3

32
n

i

i

ij

Fall 2011 Computer Science Exam, Part B

Page 3 of 6

2) (10 pts) DSN (Recursive Algorithms)

The 3n+1 problem is as follows:

Given an input value n, do the following:

1) If n is 1, stop.

2) If n is odd, produce the number 3n+1

3) If n is even, produce the number n/2

4) After step 2 or 3, go back to step 1.

The goal is to figure out how many steps it will take for the process to stop with a given number. For

example, if we start with 3, the sequence calculated is 3, 10, 5, 16, 8, 4, 2, and 1. In this case, it took 7

steps to stop. Write a recursive function that given an input value n, returns the number of steps it

takes to reach 1. If n is 1, your function should return 0. Assume that the return value will be less

than 1000 for all the input values n for which your function will be tested. Also assume that no overflow

errors will occur in the calculation.

int threenplusone(int n) {

 if (n == 1) // 1 pt

 return 0; // 1 pt

 if (n%2 == 1) // 2 pts

 return 1 + threenplusone(3*n+1); // 3 pts

 return 1 + threenplusone(n/2); // 3 pts

}

Fall 2011 Computer Science Exam, Part B

Page 4 of 6

3) (10 pts) DSN (Linked Lists)

Write a function that operates on an existing linked list of integers. Your function should insert a node

with the input value newvalue into the linked list pointed to by head in numerical order from lowest to

highest and return a pointer to the front of the list. Assume that the linked list pointed to by head is

already in numerical order from lowest to highest. (Note: You must handle the case where head is

NULL.)

struct node {

 int data;

 struct node *next;

};

struct node* insertInOrder(struct node* head, int newvalue)

{

 struct node *iter;

 struct node* temp = (struct node*)malloc(sizeof(struct node));

 temp->data = num;

 temp->next = NULL;

 if (front == NULL)

 return temp;

 if (temp->data < front->data) {

 temp->next = front;

 return temp;

 }

 iter = front;

 while (iter->next != NULL && temp->data > iter->next->data)

 iter = iter->next;

 temp->next = iter->next;

 iter->next = temp;

 return front;

}

// Grading: Creating a new node to store newvalue – 2 pts

// Working in front == NULL case – 2 pts

 Working in new node goes first case – 2 pts

 Iterating to the right place otherwise – 2 pts

 Relinking items in this case and returning – 2 pts

Fall 2011 Computer Science Exam, Part B

Page 5 of 6

4) (10 pts) ALG (Heaps)

Show the result of inserting the following integers into a minHeap: 18, 3, 14, 7, 1, 8, 9, 16, 4, 2 (Note: a

minHeap is one where the root node stores the smallest item.) Draw a box around your final answer, in

the form of a complete binary tree representing the final heap.

18 18 3 3 3 1 1

 / / \ / \ / \ / \ / \

 3 18 14 18 14 7 14 3 14 3 8

 / / \ / \ / / \ / \

 7 18 1 18 7 8 18 7 14 9

 1 1 1 1

 / \ / \ / \ / \

 3 8 3 8 3 8 2 8

 / \ / \ / \ / \ / \ / \ / \ / \

 18 7 14 9 16 7 14 9 4 7 14 9 4 3 14 9

 / / \ / \ / / \ /

 16 18 4 18 16 2 18 16 7

Grading: 1 pt for each insertion, OR 1 pt for each position in the final tree – whichever score is

higher.

Fall 2011 Computer Science Exam, Part B

Page 6 of 6

5) (10 pts) ALG (Sorting)

(a) (6 pts) Show the contents of the array below, after each Merge occurs, in the process of running

Merge-Sort on the array shown below. Assume that the Merge Sort is implemented recursively, where

the first half of the array is completely sorted before the second half of the array is ever accessed.

Index 0 1 2 3 4 5 6 7

Initial Array: 5 2 4 7 8 3 6 1

after 1
st
 Merge: 2 5 4 7 8 3 6 1

after 2
nd

 Merge: 2 5 4 7 8 3 6 1

after 3
rd

 Merge: 2 4 5 7 8 3 6 1

after 4
th

 Merge: 2 4 5 7 3 8 6 1

after 5
th

 Merge: 2 4 5 7 3 8 1 6

after 6
th

 Merge: 2 4 5 7 1 3 6 8

Sorted Array: 1 2 3 4 5 6 7 8

(b) (4 pts) Show the result of running Partition (from Quick sort) on the array below using the leftmost

element as the pivot element. Show what the array looks like after each swap. And then show the array

after the partition (remembering the final swap). Assume that the in-place implementation of partition

is used.

Index 0 1 2 3 4 5 6 7

Initial Array: 7 4 33 9 2 6 8 12

after 1
st
 Swap: 7 4 6 9 2 33 8 12

after 2
nd

 Swap: 7 4 6 2 9 33 8 12

After Partition: 2 4 6 7 9 33 8 12

