Computer Science Foundation Exam

December 18, 2009

Section II A

DISCRETE STRUCTURES SOLUTIONS

NO books, notes, or calculators may be used, and you must work entirely on your own.

Name: \qquad
PID: \qquad

In this section of the exam, there are three (3) problems. You must do ALL of them.
They count for $\mathbf{4 0 \%}$ of the Discrete Structures exam grade.
Show the steps of your work carefully.
Problems will be graded based on the completeness of the solution steps and not graded based on the answer alone.

Credit cannot be given when your results are unreadable.

Question \#	Max Pts	Category	Passing	Score
1	$\mathbf{1 5}$	PRF (Induction)	10	
2	15	PRF (Sets)	10	
3	10	PRF (Logic)	$\mathbf{6}$	
ALL	$\mathbf{4 0}$	$\cdots-$	26	

1) (15 pts) PRF (Induction)

Using induction to prove that to prove that $\sum_{i=1}^{n}(3 i+1)=\frac{n(3 n+5)}{2}$ for all $\mathrm{n} \geq 1$.
Base case: $\mathbf{n}=\mathbf{1},(3+1)=\frac{(3+5)}{2}$, which is true. ($\mathbf{2} \mathbf{p t s}$)
Inductive hypothesis: Assume for an arbitrary non-negative integer $n=k$ that $\sum_{i=1}^{k}(3 i+1)=\frac{k(3 k+5)}{2} .(2 \mathbf{p t s})$

Inductive step: Prove that for $\mathbf{n}=\mathbf{k}+\mathbf{1}$ that $\sum_{i=1}^{k+1}(3 i+1)=\frac{(k+1)(3(k+1)+5)}{2} .(\mathbf{2} \mathbf{p t s})$

$$
\begin{aligned}
\sum_{i=1}^{k+1}(3 i+1) & =\sum_{i=1}^{k}(3 i+1)+[3(k+1)+1] \\
& \left.=\frac{k(3 k+5)}{2}+[3(k+1)+1], \text { using inductive hyposithesis } \mathbf{(2} \mathbf{p t s}\right) \\
& =\frac{k(3 k+5)}{2}+3 k+4 \\
& =\frac{3 k^{2}+5 k+6 k+8}{2} \\
& =\frac{3 k^{2}+11 k+8}{2} \\
& =\frac{(k+1)(3 k+8)}{2} \\
& =\frac{(k+1)(3(k+1)+5)}{2} \text { which completes the proof. }(\mathbf{2} \mathbf{~ p t s})
\end{aligned}
$$

2) (15 pts) PRF (Sets)

Prove the following for arbitrarily chosen sets A, B and C :

$$
(B-A) \cup(C-A)=(B \cup C)-A
$$

$(B-A) \cup(C-A)$
$=\{x \mid x \in(B-A) \vee x \in(C-A)\}$, by definition of union. (3pts)
$=\{x \mid(x \in B \wedge x \notin A) \vee(x \in C \wedge x \notin A)\}$, by definition of difference (3pts)
$=\{x \mid(x \in B \vee x \in C) \wedge x \notin A\}$, by Distributive Law for logical equivalence (3pts)
$=\{x \mid(x \in(B \cup C) \wedge x \notin A\}$, by definition of union (3pts)
$=(B \cup C)-A$, by definition of difference (3pt)
Note to the grader: There are other possible ways in which to prove that these sets are equal. One way would be to show that the first side is a subset of the second, and vice versa. If this approach is taken give 9 points to the first half of the proof and 6 points to the second half.
3) (10 pts) (PRF) Logic

Use the Laws of Logic and Rules of Inference to justify the following argument:
$(\neg p \vee \neg q) \rightarrow(s \wedge r)$
$s \rightarrow t$
$\neg t$
$\therefore p$
Please name the Law of Logic or Rule of Inference used in each step of your proof.

1. $\neg t$
2. $s \rightarrow t$
3. $\neg S$
4. $\neg s \vee \neg r$
5. $-(s \wedge r)$
6. $(\neg p \vee \neg q) \rightarrow(s \wedge r)$
7. $-(\neg p \vee \neg q)$
8. $(-(\neg p)) \wedge(-(\neg q))$
9. $p \wedge q$
10. p

Premise
Premise
Modus Tollens with (1) and (2)
Disjunctive Amplification using (3)
De Morgan's Laws
Premise
Modus tollens with (5) and (6)
De Morgan's Laws
Double negation Laws
Rule of Conunctive Simplification of (9).

Grading: 1 point per step. If all of the reasons are missing, just take off 3 points.

