Computer Science Foundation Exam

December 19, 2008

Section II A

DISCRETE STRUCTURES

KEY

Question \#	Max Pts	Category	Passing	Score
$\mathbf{1}$	$\mathbf{1 5}$	PRF (Induction)	$\mathbf{1 0}$	
2	$\mathbf{1 0}$	PRF (Sets)	$\mathbf{6}$	
3	$\mathbf{1 5}$	PRF (Logic)	10	
ALL	$\mathbf{4 0}$	---	26	

PART A

1) (15 pts) PRF (Induction)

Using proof by induction, prove that $\sum_{i=1}^{n}[i(i+1)]=\frac{n(n+1)(n+2)}{3}$, for all positive integers n.

Solution.

Base case: $n=1$. LHS $=\sum_{i=1}^{1}[i(i+1)]=1(2)=2$, RHS $=\frac{1(1+1)(1+2)}{3}=\frac{6}{3}=2$. Thus LHS $=$ RHS and the base case is proven. ($\mathbf{3} \mathbf{~ p t s}$)

Inductive hypothesis: Assume for an arbitrary positive integer $n=k$ that $\sum_{i=1}^{k}[i(i+1)]=\frac{k(k+1)(k+2)}{3} .(\mathbf{3} \mathbf{p t s})$

Inductive Step: We will prove for $n=k+1$ that $\sum_{i=1}^{k+1}[i(i+1)]=\frac{(k+1)(k+2)(k+3)}{3}$

$$
\begin{aligned}
\sum_{i=1}^{k+1}[i(i+1)] & =\sum_{i=1}^{k}[i(i+1)]+(k+1)(k+2) \quad(\mathbf{2} \mathbf{~ p t s}) \\
& \left.=\frac{k(k+1)(k+2)}{3}+(k+1)(k+2), \text { using the inductive hypothesis } \mathbf{(} \mathbf{~ p t s}\right) \\
& \left.=\frac{k(k+1)(k+2)+3(k+1)(k+2)}{3} \mathbf{(1} \mathbf{~ p t}\right) \\
& \left.=\frac{(k+1)(k+2)(k+3)}{3} \cdot \mathbf{(2} \mathbf{~ p t s}\right)
\end{aligned}
$$

The inductive step is complete.
2) (10 pts) PRF (Sets)

Let A, B and C be arbitrary sets taken from the positive integers.
Prove the following statement: If $A-B \subseteq C$, then $A \subseteq B \cup C$.

Solution.

$A-B \subseteq C$ is the premise.
We assume $x \in A$. Our goal is to prove that $x \in B \cup C$. ($\mathbf{1} \mathbf{p t}$)
There are two cases: either $x \in B$ or $x \in \bar{B} .(\mathbf{1} \mathbf{p t})$
Case 1
$x \in B$.
It follows that $x \in B$ or $x \in C$ by disjunctive amplification. (1 pt)
Thus, $x \in B \cup C$ by definition of union. (1 pt)
$\underline{\text { Case } 2}$
$x \in \bar{B}$.
We know that $x \in A$, so $x \in A$ and $x \in \bar{B}$. (1 pt)
Thus, $x \in A-B$ by definition of set difference. ($\mathbf{1} \mathbf{p t}$)
We are given that $A-B \subseteq C$.
Therefore $x \in C$ by definition of subset. ($\mathbf{1} \mathbf{p t}$)
It follows that $x \in B$ or $x \in C$ by disjunctive amplification. (1 pt)
Hence $x \in B \cup C$ by definition of union. ($\mathbf{1} \mathbf{p t}$)
In both cases, we have proven that $x \in B \cup C$.
Therefore, we conclude that $A \subseteq B \cup C$ by definition of subset. $\quad(\mathbf{1} \mathbf{~ p t})$

Alternate Solution:

Use proof by contradiction. Assume to the contrary, that A is NOT a subset of $B \cup C$. It follows that there exists an element x such that $x \in A$ and $x \notin B \cup C$. (2 pts)

Logically, this means that $x \notin B$ AND $x \notin C$, since x can not be in either set, otherwise it would be contained in the union. (Formally, we have $x \notin B \cup C$ is equivalent to $\neg(x \in B \cup C) \leftrightarrow \neg(x \in B \vee x \in C) \leftrightarrow(\neg(x \in B) \wedge \neg(x \in C)) \leftrightarrow(x \notin B) \wedge(x \notin C)$.$) \quad (4$ pts)

It follows by the definition of set difference that $x \in A-B$, since x is an element of A but not B. (2 pts) But $x \in A-B$ and $x \notin C$ contradicts the given information that $A-B \subseteq C$. (2 pts)

It follows that our initial assumption is incorrect. No such x exists meaning that $A \subseteq B \cup C$, as desired.
3) (15 pts) (PRF) Logic

Use the Laws of Logic and Rules of Inference to justify the following argument:

$$
\begin{aligned}
& u \wedge p \\
& p \rightarrow \neg q \\
& r \vee t \rightarrow q \\
& s \vee t
\end{aligned}
$$

$$
\therefore s
$$

Please name the Law of Logic or Rule of Inference used in each step of your proof.

Solution.

1.	$u \wedge p$	Premise
2.	p	1, Conjunctive Simplification
3.	$p \rightarrow \neg q$	Premise
4.	$\neg q$	2, 3, Modus Ponens
5.	$r \vee t \rightarrow q$	Premise
6.	$\neg(r \vee t)$	4, 5, Modus Tollens
7.	$\neg r \wedge \neg t$	6, DeMorgan's Laws
8.	$\neg t$	7, Conjunctive Simplification
9.	$s \vee t$	Premise
10.	s	8,9, Disjunctive Syllogism

Grading:

1 pt for the symbolic form of each step (10 pts total). 5 pts total for including the names of all the rules.
(If no names are given, $\mathbf{- 5} \mathbf{p t s}$. If one or two of the names are missing or incorrect, $\mathbf{- 1}$ pt. If two to five are missing or incorrect, $\mathbf{- 2} \mathbf{p t s}$. If more than five are missing or incorrect but the student tried to give some names, $\mathbf{- 3} \mathbf{p t s}$.)

Note: There are other ways to reach the same conclusion, so make sure you give credit for other valid solutions.

