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In this section of the exam, there are four (4) problems.  You must do all of
them. 
 

Partial credit cannot be given unless all work is shown and is readable.  

 

Be complete, yet concise, and above all be neat.    



1. [12 pts]   Transform the following infix expression into its equivalent postfix 
expression using a stack. Show the contents of the stack at the indicated points 1, 2 and 3 
in the infix expressions. 

 
 
               1                       2        3 
 
P  /  (  B  +  S  –         T  )  +  M  *         N  /  C            –  A  +  F 
 
         
 
      

 
 
 
 
 
 
 
 
Resulting Postfix Expression :    
 

P B S + T -  / M N * C / + A -  F +
 
 
 
 
 
 
 
 
 
 
 
 

     
     

+     
(  *  / 
/  +  + 
1  2  3 

3   points each correct stack 
Points taken off for wrong entries 
3 points for final expression 
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2.  [11 x 2 pts] Indicate the time complexity for each of the following operations in terms 
of Big-O notation, assuming that efficient implementations are used. Give the worst case 
complexities. Following notations are being used: 
 
AINC is an array containing n integers arranged in  increasing order. 
AD is an array containing  n integers arranged in decreasing order. 
AR is an array containing n integers in random order. 
Q is a queue implemented as a linked list and containing  p elements. 
LINK is a linked list containing n nodes. 
CIRC is a circular linked list containing n elements, where C points to the last element.  
T is a binary search tree containing n nodes.  
 
 
 
a) Searching for an element in AINC  using  linear search.    ___  O(n) ______ 

2  points each correct answer 
0 otherwise 

 
b) Deleting the 10th node of linked list LINK.     ____O(1) ______  
 
c) Calling a function which uses Q, and calls dequeue  m times. ___  O(m) _______ 
 
d) Inserting an element at the end of the list CIRC.   ____ O(1) ______ 
 
e) Deleting the last element of  CIRC.    ____ O(n) ______ 
 
f) Finding the largest element of  T.     _____O(n) _____ 
 
g) Doubling the value stored in root node of  T.   ____  O(1) ______ 
 
h) Making the call selectionsort (AINC, n).    ____  O(n2) ______ 
 
i) Making the call bubblesort( AINC, n).    _____ O(n) _____ 
 
j) Making two calls one after another. The first call is  
mergesort(AD,n), followed by the call quicksort(AD,n).  _____ O(n2) _____ 
 
k) Converting a decimal integer num into its binary equivalent.   ___ O(log num) 
_______ 
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3. [ 8 pts] Write a function which accepts a linear linked list J and converts it into a 
circular linked list. The function should return a pointer to the last element.  
The node structure  is as follows: 
struct node{ 

Partial credits may be awarded if 
the function is not correct 

 int data; 
 struct node *next; }; 
 
 
 
struct node * convert ( struct node * J)  
{  
 struct node * temp = J;  
 while ( temp -> next != NULL)  
  temp = temp->next;  
 temp->next = J;  
 return temp;  
} 
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4. [8 pts ] Write the recurrence relation for the following function which takes as input 
the first n elements of the array ARRAYS holding integers. Solve it to work out the total 
number of operations, and the time complexity of the algorithm. 
int modify( int ARRAYS[ ], int n){ 
 int maximum;  
 if (n==1) return ARRAYS[0];  
 else  
 {  
  maximum = findmax(ARRAYS, n); 
  ARRRAYS[n-1] = maximum; 
  return modify(ARRAYS, n-1);  
 } 
}   
The function findmax returns the largest value in the array ARRAYS of size n.  
 
int findmax(int A[ ], n) {  
 max = A[0];  
 for (i=1, i<=n, i++)  
  if (A[i] > max) max=A[i];  
 return max;  
} 
The findmax function has a time complexity of O(n).
So it can simply be taken as n 
Recurrence relation: 
T(n) = T(n–1) + n 
T(1) = 1 
 
T(n-1) = T(n–2) + n-1 
Substituting back T(n) = T(n–2) 
Again T(n-2) = T(n–3) + n-2 
Substituting back T(n) = T(n–3) 
 
In general  
 T(n) = T(n–k) + n + n-1+. . . .
 
Since T(1)=1, Let n-k = 1 
This gives k = n-1 
Thus T(n) = T(1) + n + n-1 + . .
 
  =  n + n-1 + . . . + 3 
 = n(n +1)/2 
 

 

2 
points 
+ n + n-1 

+ n + n-1 + n-2 

 +(n-k+1) 

 . + 3 + 2 

+ 2 + 1 
3 
poin
  points 
2 
ts 
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1 point

Time complexity = O(n2 ) 
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