
FOUNDATION EXAM (DISCRETE STRUCTURES) 
 
Answer two problems of Part A and two problems of Part B.  Be sure to show the steps of 
your work including the justification.  The problem will be graded based on the completeness 
of the solution steps (including the justification) and not graded based on the answer alone.  
NO books, notes, or calculators may be used, and you must work entirely on your own.  
 

PART A: Work both of the following problems (1 and 2). 
 

1. Let Z = {0, 1, −1, 2, −2, …} denote the set of all integers (zero, positive, and 
negative).  Define a function g: Z → Z by the following formula: 
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(Thus, for example, g(0) = 1 − 0 = 1; g(1) = 1 + 3 = 4; g(−1) = −1 + 3 = 2, etc.)   
Prove that the function g defines a bijection from Z to Z; that is, prove that g is an 
injection (one-to-one) and g is a surjection (onto). 
 
First, we prove the function g is an injection (i.e., g is one-to-one).  We need to prove 
that if g(m) = g(n) --- (1), where m and n are two integers, then m = n --- (2).   
Since g(m) (and also g(n)) can be defined by two different formulas depending 
whether the argument m (and n) is even or odd, we consider the following 3 cases: 
(Case 1) Both m and n are even.  In this case, (1) implies 
 1 – m = 1 – n; thus, –m = –n, and m = n. 
So (2) is proved in this case. 
(Case 2) Both m and n are odd.  In this case, (1) implies 
 m + 3 = n + 3; thus, m = n is true. 
So (2) is proved in this case. 
(Case 3) One of the two numbers is even, the other is odd.  We may assume m is even 
and n is odd (that is, we name the even number m and name the other n).   
In this case, (1) implies (using the definition of the function g) that 
 1 – m = n + 3.  Thus, m + n = 1 – 3 = –2. 
However, since m is even and n is odd, m + n must be odd, so it cannot be equal to –2.  
That is, we proved that when m ≠ n and m is even and n is odd, g(m) = g(n) leads to a 
contradiction, which provided an indirect proof of (1) ⇒ (2) in this case. 
Therefore, we proved that (1) implies (2) in all cases, which proved the injection 
property of function g. 
 
To prove g: Z → Z is a surjection (i.e. is onto), let n ∈ Z denote an arbitrary integer 
from the co-domain Z.  We need to prove there exists m ∈ Z such that g(m) = n.  We 
choose (solve for) m depending on whether n is even or n is odd. 
(Case 1) Suppose n is even.  In this case, choose m = n – 3.  Note that m is odd, this is 
because n is even and –3 is odd, their sum is odd.  Thus, 

g(m) = m + 3, since m is odd 
 = (n – 3) + 3, by substitution 
 = n. 

(Case 1) Suppose n is odd.  In this case, choose m = 1 – n.  Note that m is even, this is 
because 1 is odd and –n is odd, their sum must be even.  Thus,  



g(m) = 1 – m , since m is even 
 = 1 – (1 – n), by substitution 
 = n. 

Thus, we showed that for each n ∈ Z there exists m ∈ Z such that g(m) = n in both 
cases, which proved that g is a surjection. 

 
2. Use induction on n ≥ 0 to prove the following summation formula: 
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by completing the induction hypothesis and the induction steps (the Basis Step is 
given for your reference): 

 
Proof:  
(Basis Step) Consider n = 0.  In this case,  
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Thus, LHS = RHS, so the Basis Step is proved. 
(Induction Hypothesis) Consider n = k.  We assume the following is true: 

 .0 somefor  ,2)1(2)2( 1

0
≥+=∑ + +

=
kki kk

i

i  

(Induction Step)  Consider n = k + 1. We need to prove 
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Thus, we proved the Induction Step. 
By induction, we proved that the summation identity is true for all n ≥ 0. 
 

PART B: Work any two of the following problems (3 through 6). 
 
3. Let A denote an arbitrary non-empty set, and let R denote a binary relation, R ⊂ A × A.  

Answer the following two parts independently of each other: 
(a) Suppose R is transitive.  Prove that the inverse relation R−1 is also transitive, where 

R−1 is defined as R−1 = {(a, b) | (b, a) ∈ R}. 
Let (a, b) ∈ R−1 --- (1) and (b, c) ∈ R−1 --- (2), we need to prove (a, c) ∈ R−1 --- (3). 



By the definition of R−1, (1) implies (b, a) ∈ R --- (4), and (2) implies (c, b) ∈ R --- 
(5).  Since R is transitive by assumption, (4) and (5) together imply (c, a) ∈ R.  
Thus, (a, c) ∈ R−1, by the definition of R−1, which proves (3). 

(b) Suppose R ≠ ∅ and R is irreflexive (that is, there does not exist any a ∈ A such 
that (a, a) ∈ R).  Prove that either R is not symmetric or R is not transitive.   
We use the method of proof by contradiction.  That is, we assume R is symmetric 
and R is transitive --- (1), then we show this leads to a contradiction. 
Since R ≠ ∅ by assumption, we let (a, b) ∈ R --- (2) denote an arbitrary element of 
R.  Thus, (2) implies (b, a) ∈ R --- (3) because R is symmetric as assumed in (1).  
Combining (2) and (3), we obtain (a, a) ∈ R by using the transitive property of R 
as assumed in (1).  However, this means R is not irreflexive, a contradiction to the 
assumption that R is irreflexive. 
 

4. Let A denote an arbitrary non-empty set, and let R, S, and T denote binary relations 
defined over A, i.e., R ⊂ A × A, S ⊂ A × A, and T ⊂ A × A.  Answer the following two 
questions independently of each of other: 
(a) Prove (R ο (S ∩ T)) ⊂ ((R ο S) ∩ (R ο T)). 

Let (a, b) ∈ R ο (S ∩ T) --- (1), we need to prove (a, b) ∈ (R ο S) ∩ (R ο T) --- (2). 
Using the definition of relation composition “ο”, (1) implies there exists c ∈ A 
such that  (a, c) ∈ R --- (3) and (c, b) ∈ (S ∩ T) --- (4). 
Note that (4) implies (c, b) ∈ S --- (5), and (c, b) ∈ T --- (6), by the definition of ∩. 
Combining (3) and (5), we obtain (a, b) ∈ (R ο S) by the definition of relation 
composition “ο”.  Similarly, combining (3) and (6) yields (a, b) ∈ (R ο T).   
Thus, (a, b) ∈ (R ο S) ∩ (R ο T), which proves (2). 

(b) Suppose A = {a, b, c}.  Use an example of relations R, S, and T defined over this A 
to show that (R ο (S ∩ T)) ≠ ((R ο S) ∩ (R ο T)). 
Define the following relations over the set A = {a, b, c}: 

R = {(a, a), (a, b)}; S = {(a, c)}; and T = {(b, c)}. 
 Thus, S ∩ T = ∅, which implies R ο (S ∩ T) = ∅.   
 However, R ο S = {(a, c)} and R ο T = {(a, c)}, so (R ο S) ∩ (R ο T) = {(a, c)}. 
 Thus, this example shows (R ο (S ∩ T)) ≠ ((R ο S) ∩ (R ο T)). 
 

5. Let A be a set that contains only the three strings , ,x yλ  where x and y each have 
length 1 and λ is the empty string. 
(a) What is 3A ? 

(b) How many strings are there in A∗  that have length less than or equal to 5? 
REMEMBER TO SHOW HOW YOUR ANSWERS ARE OBTAINED. 
 
Solution: 
 
There are 15 elements in 3A  given in the following: 
 
(a) { }3 , , , , , , , , , , , , , ,A x y xx xy yx yy xxx xxy xyx xyy yxx yxy yyx yyyλ= .  Thus, 3 15.A =  
(b) There is 1 string of length 0. 

plus 2 strings of length 1:  x, y 
plus 4 strings of length 2:  xx, xy, yx, yy 



plus 8 strings of length 3:  xxx, xxy, xyx, …, yyy 
plus 16 strings of length 4:  xxxx, xxxy, …, yyyy 
plus 32 strings of length 5:  xxxxx, xxxxy, …, yyyyy 

       for a total of 63 strings of length less than or equal to 5.  
 

6. You are given 12 playing cards that include 3 spades, 3 hearts, 3 diamonds, and 3 
clubs (that is, 3 cards of each “suit.”) 
(a) How many ways can one select 6 cards total from the 12 when choosing 1 spade, 1 

heart, 2 diamonds, and 2 clubs?   
(b) How many ways can one select 6 cards total from the 12 when choosing at least 1 

card from each suit? 
REMEMBER TO SHOW HOW YOUR ANSWERS ARE OBTAINED. 
 
Solution: 
 
(a) ( )( ) ( )( )3 3 3 3 4

1 1 2 2 3 81= = . 
(b) The choices may be distributed among the suits either as 1 from one suit, 1 from 
another suit and 2 from each of the remaining two suits (1,1,2,2); or they may be 
distributed as 1,1,1,3 for a total of 6 cards where at least one comes from each suit.  
There are ( )4

2 6= ways to decide which two suits contribute 1 card in the 1,1,2,2 cases 

and there are ( )4
1 4= ways to choose which suit contributes 3 cards in the 1,1,1,3 

cases.  Thus, the answer is ( )( )( )( ) ( )( ) ( ) ( )3 3 3 3 3 3 3 3
1 1 2 2 1 1 1 36 4 594+ = . 

 
 

 
  

  
 


