Computer Science Foundation Exam

December 14, 2000

Section I A

Solutions
(1, 20%) Given the following array of integers and algorithm, answer the questions below. Assume that the global array X[1..n] is correctly declared and contains the values shown. Assume that the procedure was called with P1(1, 6, 5).

<table>
<thead>
<tr>
<th>Array X</th>
<th>8</th>
<th>6</th>
<th>2</th>
<th>7</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

```latex
\text{procedure P1(i, j, k : integer)}
\text{\hspace{1em} a, b, c, d : integer}
\text{\hspace{1em} a} \leftarrow 0
\text{\hspace{1em} b} \leftarrow 0
\text{\hspace{1em} c} \leftarrow 0
\text{\hspace{1em} d} \leftarrow 0
\text{\hspace{1em} loop}
\text{\hspace{2em} if (X[i] > X[j]) then}
\text{\hspace{3em} a} \leftarrow a + (X[i] - X[j])
\text{\hspace{3em} X[i]} \leftarrow X[i] - k
\text{\hspace{3em} c} \leftarrow c + X[i]
\text{\hspace{3em} i} \leftarrow i + 1
\text{\hspace{2em} else if (X[j] > X[i]) then}
\text{\hspace{3em} b} \leftarrow b + (X[j] - X[i])
\text{\hspace{3em} X[j]} \leftarrow X[j] + k
\text{\hspace{3em} d} \leftarrow d + X[j]
\text{\hspace{3em} j} \leftarrow j - 1
\text{\hspace{2em} else}
\text{\hspace{3em} c} \leftarrow c + k
\text{\hspace{3em} d} \leftarrow d - k
\text{\hspace{3em} i} \leftarrow i + 1
\text{\hspace{3em} j} \leftarrow j - 1
\text{\hspace{2em} endif}
\text{\hspace{1em} exit if (i > 5) OR (j = 1)}
```

```
endloop
endprocedure
```

a) Show the array X after the procedure has completed execution?

<table>
<thead>
<tr>
<th>Array X</th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>7</th>
<th>4</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

b) What value will the following variables contain after the loop is finished?

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>10</td>
<td>20</td>
<td>26</td>
</tr>
</tbody>
</table>
```
(2, 14%) In the following Postfix expressions all values are single decimal digits and the
operations are addition "+", subtraction "-", multiplication "*" and division "/".
In each box below the Postfix expression in part a), show ONLY the contents of the stack
at the indicated point in the Postfix string (point A, B or C).
Put the final answer in the blank. If the Postfix string is invalid, carry the operations as far as
possible and write “invalid” as the answer.

a) \[4 \ 4 \ 4 \ 4 \ \text{A} \ + \ - \ * \ 2 \ 4 \ \text{B} \ + \ + \ 5 \ / \ 3 \ * \ = \ -6 \]

\[
\begin{array}{|c|c|c|}
\hline
\text{A} & \text{B} & \text{C} \\
\hline
4 & 4 & 4 \\
4 & 4 & 4 \\
4 & 4 & 4 \\
\hline
\end{array}
\]

b) given the following stack and queue operations, taken in top to bottom order, show the output
produced by the print statements:

push(5)
enqueue(4)
enqueue(2)
push(7)
enqueue(pop)
push(dequeue)
push(3)
print(dequeue)
print(pop)
push(8)
enqueue(6)
enqueue(pop)
push(dequeue)
print(pop)
print(dequeue)

output from print statements:

\[
\begin{array}{|c|c|c|c|}
\hline
2 & 3 & 4 & 7 \\
\hline
\text{first output} & \text{second output} & \text{third output} & \text{fourth output} \\
\hline
\end{array}
\]
a) For an $O(n^2)$ algorithm, one data set with $n = 7$ takes 98 seconds.
 How long will it take for a data set with $n = 5$?
 \[50 \text{ sec.}\]

b) For an $O(2^n)$ algorithm, one data set with $n = 4$ takes 15 seconds.
 If you used a different-sized data set and it took 60 seconds, how large must that data set be?
 \[n = 6\]

c) For an $O(\log n)$ algorithm, a friend tells you that it took 12 seconds to run on her data set. You run the same program, on the same machine, and your data set with $n = 32$ takes 20 seconds.
 What size was her data set?
 \[n = 8\]

Given the following pseudocode segment, answer the questions below for an arbitrary n:

```plaintext
x \leftarrow 0
for i \leftarrow 1 \text{ to } (2*n) \text{ do}
    for j \leftarrow 1 \text{ to } n \text{ do}
        if (j = i) then
            x \leftarrow x + j
```

d) What is the Order of this pseudocode segment?
\[O(n^2)\]

e) What will be the value of x when the for loops end?
\[\frac{n(n+1)}{2}\]
(4, 10%) Assume that a global array of characters, called X, exists and includes locations that range from 1 to n. In the space below, write a recursive procedure, called Reverse, that exactly reverses the order of the characters in the array.
You may assume that the array is already populated with alphabetic characters before the procedure is initially called and you should only write the code contained in Reverse. You may also assume that the procedure will initially be called as follows: Reverse(1, n). You may use pseudocode or C or Pascal syntax but points will be taken off if your meaning is not clear.

procedure Reverse(i, j : integer)
 temp : integer;
 if (i < j) {
 temp ← X[i];
 X[i] ← X[j];
 X[j] ← temp;
 Reverse(i+1, j-1)
 }
}

(5, 18%) Find the closed form or exact value for the following:
(n is an arbitrary positive integer):

a) \[\sum_{i=0}^{60} (5i - 3) = 8967 \]

b) \[\sum_{i=1}^{2k+1} (4i + 1) = 8k^2 + 14k + 5 \]

c) \[\sum_{i=40}^{90} (3i - 2) = 9843 \]
a) Is this a valid Binary Search Tree? (circle one) **No**

b) List the nodes of this tree in the order that they are visited in a **preorder** traversal:

19 13 7 16 11 27 22 25

(c) Perform the following procedure on the tree above, listing the output in the spaces below and leaving any unused spaces blank. Assume that the procedure is initially called with

P6(root) and that the tree nodes and pointers are defined as:

```plaintext
tree_node defines a record  
data isoftype Num  
left, right isoftype ptr to a tree_node  
endrecord  
tree_ptr isoftype ptr to a tree_node
```

```plaintext
procedure P6(node_ptr isoftype in tree_ptr)  
if (node_ptr <> NULL) then  
P6(node_ptr^.right)  
print(node_ptr^.data)  
P6(node_ptr^.left)  
endif  
endif  
endprocedure
```

27 25 22 19 16 11 13 7