
FOUNDATION EXAM (DISCRETE STRUCTURES) 
 
Answer two problems of Part A and two problems of Part B.  Be sure to show the steps of 
your work including the justification.  The problem will be graded based on the completeness 
of the solution steps (including the justification) and not graded based on the answer alone.  
NO books, notes, or calculators may be used, and you must work entirely on your own.  
 

PART A: Work both of the following problems (1 and 2). 
 
1. Let A, B, and C denote three arbitrary sets.  If A ⊂ B (that is, A is a subset of B or A is 

equal to B), prove that (C − B) ∩ A = ∅. 
(Solution One) We prove the result by contradiction.   
That is, assume x ∈ (C − B) ∩ A --- (1) for some x, we prove this leads to a contradiction. 
From (1), x ∈ (C − B) --- (2) and x ∈ A --- (3), by the definition of ∩. 
Thus, (2) implies x ∈ C and x ∉ B --- (4), by the definition of set difference. 
However, (3) implies x ∈ B because A ⊂ B by assumption, which contradicts to (4). 
 
(Solution Two) We prove the result directly using laws (as much as possible). 
 (C − B) ∩ A  = (C ∩ ¬B) ∩ A, by the definition of set difference 
  = C ∩ ((¬B) ∩ A) --- (1), by the associative law. 
Since A ⊂ B by assumption, so  
 ((¬B) ∩ A)  ⊂ ((¬B) ∩ B), by the definition of ∩ 
  = ∅, by the law ((¬X) ∩ X) = ∅ 
Thus, ((¬B) ∩ A) = ∅ --- (2), since the only subset of ∅ is itself. 
Substituting (2) into (1) yields 
 (C − B) ∩ A  = C ∩ ∅ 
  = ∅, by the law X ∩ ∅ = ∅. 
Thus, the proof is completed. 
 
(Solution Three) This proof is very similar to that of Solution Two. 
 (C − B) ∩ A  = (C ∩ ¬B) ∩ A, by the definition of set difference 
  = C ∩ ((¬B) ∩ A) --- (1), by the associative law. 
We now claim that ((¬B) ∩ A) = ∅ --- (2), proved by the method of contradiction. 
That is, suppose there exists x ∈ ((¬B) ∩ A) --- (3), we show this leads to a contradiction. 
From (3), x ∈ (¬B) --- (4) and x ∈ A --- (5), by the definition of ∩. 
Since A ⊂ B by assumption, so (5) implies x ∈ B, which contradicts to (4).  This 
contradiction proves (2). 
Substituting (2) into (1) yields 
 (C − B) ∩ A  = C ∩ ∅ 
  = ∅, by the law X ∩ ∅ = ∅. 
Thus, the proof is completed. 
 

2. Prove the induction step in an induction proof for the following summation result: 
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That is, state the induction hypothesis precisely, then prove the induction step based on 
the induction hypothesis. 
 
Note: In the following, we provide a complete induction proof even though the Basis 
Step is not required. 
We use induction on n ≥ 2. 
(Basis Step) Consider n = 2.  In this case,  

.
2
1

2
11  RHS The

.
4
1

2
11  LHS The

2

2 22

=−=

=∑ ==
=i i  

 Thus, LHS < RHS, so the Basis Step is proved. 
 (Induction Hypothesis) Consider n = k.  Assume the following is true: 
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 (Induction Step) Consider n = k + 1.  We need to prove 
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 Thus, (1) is proved, so the Induction Step is proved.  
 By induction we proved that 
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PART B: Work any two of the following problems (3 through 6). 
 
3. Verify the identity: 
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+ += +  where ( )n

k is the usual binomial coefficient for n and k both positive 
integers with k < n. 
 
Hint:  Two approaches are possible and you may use either.  The first is to calculate using 
the definition of the binomial coefficient.  The second is to appeal directly (and less 
formally) to the interpretation of ( )n

k as the number of ways of choosing k objects from n 
objects.   
Preferred Solution:  Think of having 1n +  golf balls consisting of 1 red ball and n white 
balls.  To choose 1k + of these 1n + we can do either of the following: 
i. choose the red golfball and choose k of the n white golfballs 
ii. don’t choose the red one and choose 1k + of the white balls.  

 
The first choice (i) can be made in ( )n

k ways and the second choice (ii) can be made in 

( )1
n
k+ ways.  The set of all ways to choose golfballs using (i) contains only choices that 

include the red golfball.  The set of all ways to choose golfballs using (ii) contains only 
choices that exclude the red golfball.  Thus, these two sets of choices are disjoint and it 
follows that the total number of ways to choose 1k + of n is given by 
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     Alternative Solution:  By definition 
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To simplify the equations we divide ( )!n k−  into !n  in the above equation and are left in 
the numerator with the largest k factors of !n  which we will define as 

 ( 1)...( 1).kn n n n k= − − +  
Now we write more simply, 
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Using this notation the required result becomes 

 1 1( 1) .
( 1)! ! ( 1)!

k k kn n n
k k k

+ ++ = +
+ +

 

 
By algebraic manipulation the Right-Hand-Side becomes 
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4. (a) How many arrangements of the word COMPUTER contain the word MOP and do not 

contain the word RUT?  (b) How many arrangements of the word COMPUTER contain 
the word MOP and do not contain the word PUT?  Justify your answers. 
Solution:  (a) Let M =  the set of all arrangements containing MOP. 
  Let R =  the set of all arrangements containing RUT. 
 
Because ( ) ( )M M R M R= ∩ ∪ ∩ is a disjoint union, we have 
  .M M R M R= ∩ + ∩  
It follows that 
  .M R M M R∩ = − ∩   (1) 
 
To find M , think of “MOP” as a single letter.  There are 6 “letters” to arrange including 

C, U, T, E, R, “MOP.”  Thus, 6!.M =   Similarly, to find M R∩ think of “MOP” as a 
single letter and “RUT” as a single letter.  There are 4 “letters” to arrange including C,E, 
“MOP,” and “RUT.”  Thus, 4!.M R∩ =   The answer we seek is 6! 4! 696M R∩ = − =  
(follows from (1)). 
 

(b) As in (a), if P = set of all arrangements containing PUT, then 
 

.M P M M P∩ = − ∩  

We still have 6!;M =  however, to find M P∩  we think of “MOPUT” as a single letter 
occurring along with C,E,R in the arrangements.  Again we have 4 “letters” so that 

4!.M P∩ =  The required answer is 

  6! 4! 696.M P M M P∩ = = ∩ = − =  
 
NOTE:  The only difference between (a) and (b) is in the explanation of how the 
answer is obtained.  No explanation means no full credit. 
 

5. Let A denote an arbitrary non-empty set, and let L denote the relation defined over A as 
follows: 

L = {(a, a) | a ∈ A} 
Suppose R is a transitive relation over A, that is, R ⊂ A × A, and for all x, y, z ∈ A, if (x, y) 
∈ R and (y, z) ∈ R then (x, z) ∈ R.  Prove that the relation R ∪ L is transitive. 
  
To prove R ∪ L is transitive, let (a, b) ∈ R ∪ L --- (1) and let (b, c) ∈ R ∪ L --- (2), we 
need to prove (a, c) ∈ R ∪ L --- (3). 
From (1), (a, b) ∈ R or (a, b) ∈ L; that is (a, b) ∈ R or a = b --- (4), by the definition of 
relation L.  Similarly, (2) implies (b, c) ∈ R or (b, c) ∈ L; that is (b, c) ∈ R or b = c --- (5). 
Combining (4) and (5), there are the following 4 cases to consider: 
 
(Case 1) (a, b) ∈ R and (b, c) ∈ R.  In this case,  
 (a, c) ∈ R, because R is transitive by assumption 



 ⊂ R ∪ L. 
(Case 2) (a, b) ∈ R and b = c.  In this case, 
 (a, c) = (a, b) ∈ R ⊂ R ∪ L. 
(Case 3) a = b and (b, c) ∈ R.  In this case,  
 (a, c) = (b, c) ∈ R ⊂ R ∪ L. 
(Case 4) a = b and b = c.  In this case, 
 (a, c) = (c, c) ∈ L ⊂ R ∪ L. 
 
Thus, we proved (a, c) ∈ R ∪ L in all cases, so (3) is proved. 
 

6. Let p, q, r denote three propositions (i.e. statements).  Prove that the logical expression (p 
and q)⇒ r is equivalent to the expression (p⇒ (q⇒ r)).  
(Solution One) Proof using the laws of logic: 
 (p and q)⇒ r ≡ ¬(p and q) or r, using the law (x⇒ y) ≡ (¬x) or y 
 ≡ ((¬p) or (¬q)) or r, using De Morgan’s law 
 ≡ (¬p) or ((¬q) or r), the associative law 
 ≡ (¬p) or (q⇒ r), using the law (x⇒ y) ≡ (¬x) or y 
 ≡ p⇒ (q⇒ r), using the law (x⇒ y) ≡ (¬x) or y. 
 
(Solution Two) Proof using the truth table (we use T for True, F for False): 
 

p q r p and q (p and q)⇒ r q⇒ r p⇒ (q⇒ r) 
F F F F T T T 
F F T F T T T 
F T F F T F T 
F T T F T T T 
T F F F T T T 
T F T F T T T 
T T F T F F F 
T T T T T T T 

 
Note that the column for the expression (p and q)⇒ r, and the column for the expression 
p⇒ (q⇒ r), have identical truth values in all combinations of the truth values for 
propositions p, q, and r.  Thus, these two logical expressions are equivalent. 


