Computer Science Foundation Exam

August 18, 2000 Solution for CS 1 sections

$\mathbf{(1 , 2 0 \%})$ Given the following array of numbers and algorithm, answer the questions below. Assume that the global array $\mathbf{X}[\mathbf{1} . \mathbf{n}]$ is correctly declared and contains the values shown.
Assume that the procedure was called with $\mathbf{S}(\mathbf{1}, \mathbf{6})$.

Array X	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{5}$
position	1	2	3	4	5	6

procedure $S(i, j$: integer)
$\mathrm{a}, \mathrm{b}, \mathrm{y}, \mathrm{z}$: integer
$a \leftarrow 0$
$\mathrm{b} \leqslant 0$
$\mathrm{y} \leftarrow 0$
$z \leftarrow 0$
while (i < j) do if (X[i] < X[j]) then
$z \leftarrow z+j$
$X[i] \leftarrow X[i]+i$
$i \leftarrow i+1$
$y \leftarrow y+x[i]$
else
$y \leqslant y+i$
$X[j] \leftarrow X[j]+j$
$z \leftarrow z+X[j]$
$j \leftarrow j-1$
endif
if $(\mathrm{a}<=\mathrm{b})$ then
$a \leftarrow X[i]$
else
$b \leftarrow X[j]$
endif
endwhile
endprocedure
a) Show the array \mathbf{x} after the procedure has completed execution?

Array \mathbf{x}	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 1}$
position	1	2	3	4	5	6

b) What value will the following variables contain after the while loop is finished?

$\mathbf{(2 , 1 4 \%})$ The following are Postfix expressions. All values are single decimal digits and the operations are addition " + ", subtraction "-", multiplication "*" and division " $/$ ".
In each box below the Postfix expression, show ONLY the contents of the stack at the indicated point in the Postfix string (point A, B or C). Put the final answer in the blank. If the Postfix string is invalid, carry the operations as far as possible and write "invalid" as the answer.
a) $7213+{ }^{\mathrm{A}} *-53+{ }^{\mathrm{B}} * 2 / 6^{\mathrm{C}} *=\underline{\mathbf{- 2 4}}$

4
2
7
A

b) $35-82^{\text {A }} / 46-72^{\text {B }}-*^{\text {C }}+*=\underline{12}$

2
8
-2
A

2
7
-2
4
-2
B

Next to each Postfix expression, circle one answer to indicate if it is a valid Postfix string or not: (no extra credit for providing the answer, if it is valid)
c) $753-+3 / * 42+$

Invalid
d) $43-23 * 58-+4-* 2+$

Valid
$\mathbf{(3 , 2 0 \%}$) Answer each of the following "timing" questions concerning an algorithm of a particular order and a data set of a particular size. Assume that the run time is affected only by the size of the data set and not its composition.
a) For an $\mathbf{O}\left(\mathbf{n}^{3}\right)$ algorithm, one data set with $\mathbf{n}=\mathbf{5}$ takes $\mathbf{2 5 0}$ seconds.

How long will it take for a data set with $\mathbf{n}=\mathbf{3}$?
54 seconds

$$
\begin{array}{ll}
5^{3} \\
---- & = \\
250 & ---; x=27 * 250 / 125=54
\end{array}
$$

b) For an $\mathbf{O}\left(\mathbf{n} \log _{2} \mathbf{n}\right)$ algorithm, one data set with $\mathbf{n}=\mathbf{8}$ takes $\mathbf{9 6}$ seconds.

If you used a different-sized data set and it took
32 seconds, how large must that data set be?
$\underline{n}=4$
$8 \log (8) \quad n \log (n)$
$--------=-------\quad ; \quad n \log (n)=8 ; n=4$
c) For an $\mathbf{O}\left(2^{\mathbf{n}}\right)$ algorithm, a friend tells you that it took $\mathbf{8}$ seconds to run on her data set. You run the same program, on the same machine, and your data set with $\mathbf{n}=\mathbf{7}$ takes $\mathbf{6 4}$ seconds.

What size was her data set?
$\underline{n}=4$
$2{ }^{\text {n }}$ 2
$---=---\quad 2^{n}=8 * 128 / 64 ; n=\log (16)=4$
8
64

Given the following pseudocode segment, answer the questions below for an arbitrary \mathbf{n} :

```
\(x \leftarrow 0\)
for \(i \leftarrow 1\) to \(\left(2 *_{n}\right)\) do
        for \(j \leftarrow 1\) to \(\left(3 *_{n}\right)\) do
            \(\mathbf{x} \leqslant \mathbf{x}+i\)
```

d) What is the Order of this pseudocode segment?

$O\left(n^{2}\right)$

e) What will be the value of \mathbf{x} when the for loops end?

$$
\mathbf{6 n}^{3}+\mathbf{3} n^{2}
$$

$$
\sum_{i=1}^{2 n} \sum_{j=1}^{3 n} i=\sum_{i=1}^{2 n} 3 n i=3 n \sum_{i=1}^{2 n} i=3 n(2 n+1)(2 n) / 2=6 n^{3}+3 n^{2}
$$

$\mathbf{(4 , 1 0 \%})$ In the space below, write a recursive algorithm called PrintOdd, that prints only the odd numbers from $\mathbf{1}$ to \mathbf{n} in increasing order. The initial value of \mathbf{n} may be either even or odd.

```
procedure PrintOdd(n)
    realPrint(1, n);
endprocedure;
procedure realPrint(current, n)
        if current <= n then
            print current;
            realPrint(current+2, n);
    endif;
endprocedure
```


There are, of course, many other correct solutions

$\mathbf{(5 , 1 8 \%})$ Find the closed form or exact value for the following:
(n is an arbitrary positive integer):
a)

$$
\begin{aligned}
& \sum_{i=1}^{2 n-1}(6 i+5)=\underline{\mathbf{1 2}} \mathbf{n}^{2}+\mathbf{4 n}-\mathbf{5} \\
& =6 \sum_{i=1}^{2 n-1} i+5^{*}(2 n-1)=6(2 n)(2 n-1) / 2+10 n-5=12 n^{2}+4 n-5
\end{aligned}
$$

b)

$$
\begin{aligned}
& \sum_{i=0}^{60}(2 n i-4)=\underline{\mathbf{3 6 6 0 n}-\mathbf{2 4 4}} \\
& \sum_{i=0}^{60}(2 n i-4)=2 n \sum_{i=0}^{60} i-4 * 61=2 n(61)(60) / 2-244=3660 n-244
\end{aligned}
$$

c)

$$
\begin{aligned}
& \sum_{i=40}^{100}(3 i-6)=\underline{\mathbf{1 2 4 4 4}} \\
& \sum_{i=40}^{100}(3 i-6)=3 \sum_{i=0}^{60}(i+40-2)=3(61)(60) / 2+3(61)(38)=(3)(61)(30+38)=12444
\end{aligned}
$$

($\mathbf{6}, \mathbf{1 8 \%}$) Given the following Binary Tree, answer the questions below :

a) Is this a valid Binary Search Tree? (circle one) No
b) List the nodes of this tree in the order that they are visited in a postorder traversal:

$\begin{array}{lllllllll}6 & 9 & 12 & 17 & 14 & 24 & 27 & 21 & 19\end{array}$

c) Perform the following procedure on the tree above, listing the output in the spaces below and leaving any unused spaces blank. Assume that the procedure is initially called with
Problem_6(root, 22) and that the tree nodes and pointers are defined as:

```
tree_node definesa record
                        data isoftype Num
                        left, right isoftype ptr toa tree_node
        endrecord
        tree_ptr isoftype ptr toa tree_node
```

procedure Problem_6(node_ptr isoftype in tree_ptr,
key isoftype in Num)
if (node_ptr <> NULL) then
if (node_ptr^.data $=$ key) then
print (key)
elseif (node_ptr^.data > key) then
print (node_ptr^.data)
Problem_6(node_ptr^.left, key)
else
print (node_ptr^.data)
Problem_6(node_ptr^.right, key)
endif
endif
endprocedure

192127
 24

