
Computer Science Foundation Exam

August 12, 2005

Computer Science

Section 1B

No Calculators!

Name:

SSN:

 Score:

 ⁄ 50

In this section of the exam, there are four (4) problems. You must do all of
them.

The weight of each problem in this section is indicated with the problem.

Partial credit cannot be given unless all work is shown and is readable.

Be complete, yet concise, and above all be neat.

KEY
Solutions and Grading Criteria

 2

1. [12 points]
(a – 6 points)

Construct a binary search tree from the values shown below. The values appear in the order in
which they are input to the binary search tree construction process.

 Input Values: 40, 35, 60, 74, 58, 37, 70, 36, 20, 50

(b – 6 points)
List the order in which the nodes in the tree shown below are visited in a postorder traversal.

The order the nodes are visited in postorder traversal is:

50 46 27 35 56 69 50 18 30 78 40 38

40

35 60

58

50

3720 74

70 36

38

35 40

18

50

27 50 78

3046

56 69

Tree must be drawn in the order
the values appear. If another
order is used deduct entire 6 pts.

If final tree is not a valid search
tree deduct entire 6 pts.

Deduct 2 pts for first
value out of order and 1
pt for each additional
value out of order.

 3

2. [16 points]
The selection sort algorithm sorts an array of n elements as follows (subscripts from 0 to n-1):
locate the largest element in the array, then switch the largest element with the element at subscript
n-1, thereby placing the largest element in the last position. Then locate the largest element
remaining in the subarray with subscripts 0 to n-2 and switch it with the element at subscript n-2,
thereby placing the second largest element in the next to last position. The process repeats until the
array is sorted. Write a recursive selection sort function that will correctly sort an array of n
elements. Assume that the elements are integer values. Hint: a helper function might be useful.

One possible solution is:

void locate_max (int array[], int n)
{
 int temp, /* temp use for exchange of position */

 max_index; /* index of largest element */

 max_index = n-1; /* assume last value is largest */

for (int j = n-1; j>= 0; --j)
 if (array[j] > array[max_index])

 max_index = j;

/* do exchange if necessary */
if (max_index != n-1)
{ temp = array[n-1];
 array[n-1] = array[max_index];
 array[max_index] = temp;

 }
}

void select_sort (int array[], int n)
{

if (n > 1)
{ locate_max(array, n);
 select_sort(array, n-1);
}

 }

There is certainly more than one way to solve this problem, the
solution given is simply one technique. Make sure their code is
recursive and deduct the entire 16 pts if it is not recursive.

Be sure to check the stopping conditions.

 4

3. [12 points]
Show the exact output produced by the following program by tracing its execution. Place you
answer in the box provided below.

Exact output is:

1. *x = 4, y = 17, *z = 17

2. a = 30, b = 9, *c = 9

3. *x = 18, *y = 6, z = 30

4. a = 14, b = 6, *c = 14

#include <stdio.h>
int q1 (int *, int, int *);
int q2 (int *, int *, int);
int main () {
 int a= 4;
 int b = 17;
 int *c;
 c = &b;
 a = q1(&a, b, c);
 printf("2. a = %d, b = %d, *c = %d\n",a, b, *c);
 c = &a;
 a = q2(c, &b, a);
 printf("4. a = %d, b = %d, c = %d\n", a, b, *c);
 return 0;
}
int q1 (int *x, int y, int *z){
 int a = 5;
 int *p;
 printf("1. *x = %d, y = %d, *z = %d\n",*x, y, *z);
 p = z;
 *p = a + *x;
 return (*x + *z + y);
}
int q2(int *x, int *y, int z) {
 int b = 3;
 int *p;
 int *q;
 q = y;
 p = x;
 *p = *x - *q - b;
 b = *p;
 p = q;
 *q = 6;
 printf("3. *x = %d, *y = %d, z = %d\n", *x, *y, z);
 p = x;
 *p = b - *y;
 return(*x + *y - 4);
 }

If they are not careful, it is easy to get
off track when tracing, especially if
they are sloppy in their technique.
Since we are looking for exact output
here, precision is important. Count
each output as 1 point.

 5

4. [10 points – 5 points each part]
Given the following program answer the questions (a) and (b) below.

(a) Show the values in array X after the function has completed execution.

index 0 1 2 3 4 5

value 1 9 15 29 56 111

(b) Consider the case where each element of the array X is equal to some value m, where m is a

positive integer. What will be the sum of the elements of array X, in terms of m, when the
program finishes?

 1m + 5m + 9m + 17m + 33m + 65m = 130m

Array X after function execution

#define n 6

void arrayOp(int X[]);

int main(void)
{
 int X[n];
 X[0] = 1; X[1] = 3; X[2] = 1; X[3] = 2; X[4] = 1; X[5] = 2;
 arrayOp(X);
 return 0;
}

void arrayOp(int X[])
{ int i, j, k, s, t;
 i = 0;
 while (i < n)
 { i++;
 s = 0;
 j = 1;
 while (j <= n)
 { s = X[j] + s;
 j++;
 }
 X[i] = s;
 }
}

Simple tracing exercise using arrays. Again,
they must be careful and probably the ones
who are not will miss the last statement in
the outer loop which sets the value for the
next array element since index “i” is
incremented just inside this loop.
Part (a) – 1 point per answer.
Part (b) - make sure the answer is expressed
in terms of “m”, if they did the trace
correctly, this part should be correct.

