Computer Science Foundation Exam

August 6, 2004

Computer Science I Section I B

[image: image1]
Name:

(print clearly)

SSN/ID:

 Score:

In this section of the exam, there are four (4) problems. You must do all of them. The weight of each problem in this section is indicated near the problem number.

The algorithms in this exam are written in C. Any algorithm that you are asked to produce should use a syntax that is clear and unambiguous.

Partial credit cannot be given unless all work is clearly shown. Be complete, concise, and neat. Credit cannot be given when your answers are unreadable.

1. (15 points)

Find the closed form expression in terms of the parameter n or an exact value if the summation limits are known, for each of the following summations.

Show all of your work…an answer alone is not sufficient to receive full credit.

(a) (5 points) Find the closed form for:
[image: image2.wmf](

)

å

+

=

-

1

2

8

3

2

n

i

i

[image: image3.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

36

4

21

56

1

2

3

2

2

1

2

)

7

(

3

2

)

8

)(

7

(

2

1

2

3

2

2

2

1

2

2

1

3

2

1

3

2

3

2

3

2

2

1

2

1

7

1

7

1

7

1

1

2

1

1

2

1

-

=

-

-

+

-

+

+

÷

ø

ö

ç

è

æ

-

-

+

-

+

+

=

÷

ø

ö

ç

è

æ

-

-

-

=

-

-

-

å

å

å

å

å

å

+

=

=

=

=

+

=

+

=

n

n

n

n

n

n

n

i

i

i

i

n

i

i

i

i

n

i

n

i

(b) (5 points) Find the closed form for:
[image: image4.wmf](

)

å

=

+

80

1

6

3

i

ni

[image: image5.wmf]å

å

=

=

+

=

+

=

+

=

+

80

1

80

1

480

9720

480

)

81

)(

40

(

3

)

80

(

6

2

)

81

)(

80

(

3

1

6

3

i

i

n

n

n

i

n

(c) (5 points) Find the closed form for:
[image: image6.wmf]å

=

n

i

i

3

1

4

[image: image7.wmf](

)

(

)

(

)

n

n

n

n

n

n

i

n

i

6

18

3

9

2

2

1

3

3

4

4

2

2

3

1

+

=

+

=

+

=

å

=

2. (7 points)

Find the value of x in terms of n after the code segment shown below has executed. You may assume that n is a positive integer. You may assume the existence of a function even(x) which takes an integer parameter and returns true if the parameter is an even number and false otherwise. Show all of your work.

x = 0;

for (int i = 1; i <= 2*n; ++i)

 for (int j = 1; j <= 3*n-2; ++j)

 if even(i)

 x = x + 4 * j + 6;

[image: image8.wmf](

)

(

)

(

)

(

)

(

)

(

)

n

n

n

n

n

n

n

n

n

j

j

n

i

n

i

n

i

n

i

n

j

n

i

n

j

n

j

8

18

8

18

1

8

18

8

18

2

3

6

2

1

3

2

3

4

1

6

4

6

4

3

2

1

1

2

2

1

1

2

3

1

1

2

3

1

2

3

1

-

=

-

=

-

=

-

=

=

÷

ø

ö

ç

è

æ

-

+

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

+

=

+

å

å

å

å

å

å

å

å

=

=

=

=

-

=

=

-

=

-

=

3. (8 points)

Write a recursive function named rsum with three input parameters; an array of integers named A, and two integers named first and last. The function sums the array from index first to index last and returns this sum to the caller.

#include <stdio.h>

/*function prototype*/

int rsum (int A[], int first, int last)

int main() // sample main program

{ int result;

 int list[10] = {10, 6, 4, 6, 3, 15, 11, 9, 8, 7, 6, 4};

 result = rsum(list, 2, 7);

 printf(“The result is: %d\n”, result);

 return 0;

}

//recursive function to sum array values from first to last

int rsum(int A[], int first, int last)

{

if (first == last)

return A[first];

return (A[first] + rsum(A, first+1, last));

}

4. (20 points)

Given the binary tree shown below, answer questions (a) and (b).

[image: image9]

(a – 3 points) Is the binary tree shown above a valid binary search tree? YES NO

Circle the correct answer.

(b – 17 points) In the tree on the next page, fill in the value of each node based on the changes made by executing the following algorithm on the tree shown above. Assume that the initial call is: prob4(root, 10) and that the tree nodes and pointers are defined as shown. Assume that root is a pointer to the node containing 60.

struct treeNode{

 int data;

 struct treeNode *left, *right:

}

struct treeNode *tree_ptr;

void prob4(struct tree_ptr *node_ptr, int key){

 if (node_ptr != NULL){

 if (node_ptr->data % 2 == 0){

 node_ptr->data = node_ptr->data + key;

prob4(node_ptr->left, (key + key));

prob4(node_ptr->right, key);

 }

 elseif (node_ptr->data % 3 == 0){

node_ptr->data = node_ptr->data - key;

prob4(node_ptr->right, (key + key));

prob4(node_ptr->left, key);

 }

 else {

 node_ptr->data = node_ptr->data + 5;

prob4(node_ptr->left, (key + 5));

 }

 }

}

Solution to Question 4 part b:

 /50

60

33

80

22

47

69

87

9

25

24

64

75

84

90

91

36

40

85

81

96

110

94

35

84

49

30

(31

77

49

52

42

90

13

70

KEY

PAGE
5

_1150792806.unknown

_1150793268.unknown

_1151923134.unknown

_1151923157.unknown

_1150805348.unknown

_1150792936.unknown

_1150792207.unknown

