Computer Science Foundation Exam

August 6, 2001

Section I B

No Calculators!

KEY

SSN:

In this section of the exam, there are three (3) problems
You must do all of them.
The weight of each problem in this section is indicated with the problem. The algorithms in this exam are written in a combination of pseudocode and programming language notation. Any algorithms that you are asked to produce should use a syntax that is clear and unambiguous. Partial credit cannot be given unless all work is shown.

As always, be complete, yet concise, and above all be neat. Credit cannot be given when your results are unreadable.
$\mathbf{(4 , 1 0 \%})$ Write a recursive procedure (not a function), called prob4, that will correctly print the first \mathbf{n} even integer numbers. Assume that $\mathbf{n}>\mathbf{0}$. For the purposes of this problem assume that the integer numbers begin with the number 1 (i.e., do not consider 0). The initial call is prob4(n). For example, the call prob4(5) would print $2,4,6,8,10$. You may use pseudocode, C, Java or Pascal syntax but points will be deducted if your meaning is not clear.
procedure prob4 (n isoftype in Num)
//purpose: to print the first n even integer numbers recursively. //assumption: $\mathrm{n}>0$
if $(\mathrm{n}=1)$ then
print(2, " ")
else
prob4 ($n-1$)
print (2n, "")
endif
endprocedure //prob4
$\mathbf{(5 , 1 8 \%})$ Find the closed form or exact value for the following:
(k is an arbitrary positive integer):
a) $\quad \sum_{\mathrm{i}=1}^{2 \mathrm{k}+5}(2 \mathrm{i}-4)=2 \times \sum_{\mathrm{i}=1}^{2 \mathrm{k}+5} \mathrm{i}-4 \times \sum_{\mathrm{i}=1}^{2 \mathrm{k}+5} 1=\frac{2(2 \mathrm{k}+5)(2 \mathrm{k}+6)}{2}-4(2 \mathrm{k}+5)$

$$
=(2 k+5)(2 k+6)-8 k-20=4 k^{2}+12 k+10 k+30-8 k-20
$$

$$
=4 \mathrm{k}^{2}+14 \mathrm{k}+10
$$

b) $\quad \sum_{\mathrm{i}=0}^{35}(6 \mathrm{i}-3)=6 \times \sum_{\mathrm{i}=0}^{65} \mathrm{i}-3 \times \sum_{\mathrm{i}=0}^{65} 1=6 \times\left[\frac{(35)(36)}{2}\right]-3(36)$

$$
=3(35)(36)-3(36)=(108)(35)-(108)
$$

$$
=3672
$$

c)

$$
\begin{aligned}
\sum_{i=20}^{65}(4 i & +6)=4 \times \sum_{i=20}^{65} i+6 \times \sum_{i=20}^{65} 1=\left(4 \times \sum_{i=1}^{65} i-4 \times \sum_{i=1}^{19} i\right)+\left(6 \times \sum_{i=1}^{65} 1-6 \times \sum_{i=1}^{19} 1\right) \\
& =\left(4\left[\frac{(65)(66)}{2}\right]-4\left[\frac{(19)(20)}{2}\right]\right)+(6(65)-6(19)) \\
& =[2(65)(66)-2(19)(20)]+[390-114] \\
& =8096
\end{aligned}
$$

(6, 18\%) Given the following Binary Tree, answer the questions below :

a) Is this a valid Binary Search Tree? (circle one)

b) List the nodes of this tree in the order that they are visited in a preorder traversal:

$\mathbf{2 4}$	$\mathbf{1 4}$	$\mathbf{2 0}$	$\mathbf{2 2}$	$\mathbf{2 6}$	$\mathbf{3 0}$	$\mathbf{2 8}$	$\mathbf{3 4}$	$\mathbf{3 2}$	$\mathbf{3 8}$
$\substack{\text { first node } \\ \text { visited }}$									

c) Perform the following procedure on the tree above, listing the output in the spaces below and leaving any unused spaces blank. Assume that the procedure is initially called with: P6(root, 30) and that the tree nodes and pointers are defined as:
tree_node definesa record
data isoftype Num
left, right isoftype ptr toa tree_node
endrecord
tree_ptr isoftype ptr toa tree_node

```
procedure P6 (node_ptr isoftype in tree_ptr, key isoftype in Num)
    if (node_ptr <> NULL) then
        P6(node_ptr^.right, (key - 5))
        P6(node_ptr^.left, (key + 5))
        if (node_ptr^.data < key) then
            print(node_ptr^.data)
        endif
    endif
endprocedure
```

28	22	20	14	24
	$\boxed{ } \quad-\quad+$			

