
 Computer Science Foundation Exam

August 1, 2003

COMPUTER SCIENCE I

Section I B

No Calculators!

Name:

SSN:

 Score:

In this section of the exam, there are three (3) problems

You must do all of them.

The weight of each problem in this section is indicated with the problem. The
algorithms in this exam are written in C. Any algorithms that you are asked to
produce should use a syntax that is clear and unambiguous. Partial credit
cannot be given unless all work is shown.

As always, be complete, yet concise, and above all be neat. Credit cannot be
given when your results are unreadable.

 ⁄ 50

KEY

Computer Science B Page 1 of 6 KEY

1. (15 points)
Write a recursive function that will concatenate two singly-linked lists. Assume that each list has
already been created and may or may not be empty. The function is to be implemented requiring only
two parameters, which may be assumed to be pointers to the lists to be concatenated.

You may assume the following functions exist:

 ListHead (list) - this function returns a pointer to the head of the argument list.
 ListTail (list) - this function returns a pointer to the remainder of the argument list after removing

the head of the list.
 ListCons(head, tail) –this function allocates and returns a new list, which consists of the element

head followed by the list tail.

One Possible Solution

listADT ListConcat (listADT list1, listADT list2)
{

if (list1 == NULL)
 return (list2);
 else
 return (ListCons(ListHead(list1), ListConcat(ListTail(list1), list2)));
}

Computer Science B Page 2 of 6 KEY

2. (15 points – 5 points each)

Find the closed form expression in terms of the parameter N or an exact value if the summation limits
are known, for each of the following summations. Show all of your work; an answer alone is not
sufficient to receive full credit.

a) =+∑
=

N

0i
)2i5(

Solution:

∑∑ ∑
== =

++
=++

+
=+=+

N

0i

2N

0i

N

0i 2
4N9N5

2N2
2

)1N)(N(5
12i5)2i5(

b) =+∑
−

=

4N2

1i
)2i4(

 Solution:

()

16N24N88N424N28N8

8N4)12N14N4(28N4
2

12N8N6N44

)4N2(2
2

)3N2)(4N2(4
12i4)2i4(

22

2
2

4N2

1i

4N2

1i

4N2

1i

+−=−++−=

−++−=−++−−=

−+
−−

=+=+∑ ∑∑
−

=

−

=

−

=

 c) ∑
=

=−
27

14i
)2i3(

 Solution:

83326542731134)13(2)27(2)7)(13(3)14)(27(3

)13(2)27(2
2

)14)(13(3
2

)28)(27(31212i3i3)2i3(
27

14i

27

1i

13

1i

27

1i

13

1i

=+−−=+−−=

+−−=

−−

−=−∑ ∑ ∑∑ ∑

= = == =

Computer Science B Page 3 of 6 KEY

1st node
visited

3. (20 points – 2pts(a), 6pts(b), 12pts(c))
 Given the following Binary Tree, answer the questions (a) through (c) below :

(a) Is this a valid Binary Search Tree? (circle one) YES NO

(b) List the nodes of this tree in the order that they are visited in a postorder traversal:

50 20 10 14 16 30 35 22

34 70 69 68 60 90 85 98

last node
visited

50

20 70

10 30

14

16

35

22

34

69

68

60

90

85 98

Computer Science B Page 4 of 6 KEY

(c) Execute the algorithm shown below using the tree shown above. Show the exact output produced by

the algorithm. Assume that the initial call is: prob3(root) and that the tree nodes and pointers are
defined as shown.

 struct treeNode{
 int data;
 struct treeNode *left, *right;
 }
struct treeNode *tree_ptr;

void prob3(struct tree_ptr *node_ptr) {
 if (node_ptr != NULL){
 if (node_ptr->data % 3 == 0){
 printf(“%d “, node_ptr->data);

 prob3(node_ptr->left);
 }
 else{
 if (node_ptr->data % 3 == 1){
 printf(“%d “, node_ptr->data+2);
 prob3(node_ptr->right);
 }
 else{

50

20 70

10 30

14

16

35

22

34

69

68

60

90

85 98

Computer Science B Page 5 of 6 KEY

 if (node_ptr->data % 3 == 2){
 prob3(node_ptr->left);
 prob3(node_ptr->right);
 }
 }
 }
 }
 }

Output:
12 18 30 72 90 87

