
Computer Science Foundation Exam

May 6, 2005

Computer Science

Section 1A

No Calculators!

Name:

SSN:

 Score:

 ⁄ 50

In this section of the exam, there are four (4) problems. You must do all of
them.

The weight of each problem in this section is indicated with the problem.

Partial credit cannot be given unless all work is shown and is readable.

Be complete, yet concise, and above all be neat.

KEY

 2

1. [12 pts] Transform the following infix expression into its equivalent postfix
expression using a stack. Show the contents of the stack at the indicated points A, B and
C in the infix expressions.

 A B C

R + P * N – D * (E / F – K) – L + M

Grading: 3 points for each stack filled correctly (Total 9 points)

Resulting Postfix Expression :

R P N * + D E F / K – * – L – M +

Grading: 3 points for correct post fix expression (If order of operators is
wrong but operands are in correct order , give 1 point).

 (

* *

+ – –

A B C

 3

2. Indicate the time complexity for each of the following operations in terms of Big-O
notation, assuming that efficient implementations are used. Give the worst case
complexities in terms of n, assuming that each data structure holds n elements.

a) Searching for an element in a sorted array using Binary Search. O(log n)
Grading: 3 points if correct , zero otherwise.

b) Push operation in a linked list stack containing n elements. O(1)
Grading: 3 points if correct , zero otherwise.

c) Deleting the first element in a circularly linked list APLPHA,
 where ALPHA points to the last element of the list O(1)
Grading: 3 points if correct , 1 point if wrong

d) Inserting a node in a binary search tree. O(n)
Grading: 3 points if correct , 1 point if wrong

e) Searching for a specific element in a linked list whose
elements are in ascending order. O(n)
Grading: 3 points if correct , zero otherwise.

f) Adding 25 to each node of a Balanced Binary Search Tree. O(n)
Grading: 3 points if correct , 1 point if wrong

g) Checking if FOUR lists, each of size n are identical to each other. O(n)
Grading: 3 points for O(n)
 1 point for O(4n)
 Zero otherwise

h) Applying quicksort on an array whose elements are
ALREADY SORTED in the proper order. O(n2)

Grading: 3 points if correct , zero otherwise

 4

3. [6 points] Consider the linked list shown below where pList points to the node
containing the value 4.

pList

Draw the list again showing the changes after the following code is executed.

pCur= pList;
 while (pCur->next->next != NULL)
 pCur = pCur->next;
 pCur->next->next = pList;
 pList = pCur->next;
 pCur->next = NULL;
 pCur = NULL;

SOLUTION:
pList

Grading: 6 points if new list is as shown above.
 Only 3 points if new list is same as above except that it does not contain
 node 5 at the end
 Only 1 point if the list is anything else

4 8 7 2 3 9 5 6 null

6 4 8 7 2 3 9 5 null

 5

[8 pts] Work out the number of operations involved in the following function msort.
It is specified that n is a power of 2 and that line12 needs n operations. (Note that
n1 will always equal n2.) Ignore all operations involved in line3 to line9 from
your calculations.
void msort(int array[], int n) { line 1

 int j,n1,n2,leftarray1[n],rightarray[n]; line2
 if (n<=1)return; line3
 n1=n/2; line4
 n2 = n - n1; line5
 for (j = 0; j<n1; j++) line6
 leftarray[j]= array[j]; line7
 for (j = 0; j<n2; j++) line8
 rightarray[j]= array[j+n1]; line9
 msort(leftarray, n1); line10
 msort(rightarray, n2); line11
 merge(leftarray, n1, rightarray, n2, array, n);line12
}

Recurrence relation for the function:

T(1) = 1
T(n) = T(n/2) + T(n/2) + n (since n is a power of 2, n1= n2 = n/2)
Grading: 3 points if recurrence relation is correct
Using same logic and going further down

T(n/2) = 2 T(n/4) + n/2

Substituting for T(n/2) in the equation for T(n),we get

T(n) = 2[2 T(n/4) + n/2] + n

 = 4 T(n/4) + 2n
Grading: 1 point more if solution is correct up to this point.

Again by rewriting T(n/4) in terms of T(n/8), we have

T(n) = 4 [2 T(n/8) + n/4] + 2n

 = 8 T(n/8) + 3 n

 = 23 T(n/ 23) + 3 n

The next substitution would lead us to

 6

T(n) = 24 T(n/ 24) + 4 n

Continuing in this manner, we can write for any k,

T(n) = 2k T(n/ 2k) + k n
Grading: 2 points more if solution is correct up to this point.
This should be valid for any value of k. Now setting 2k = n. , gives k =log n.
Substituting in the expression for T(n)

T(n) = n T(1) + n log n

 = n log n + n

Grading: 2 points more if final solution is correct.

