

Computer Science Foundation Exam

COMPUTER SCIENCE I

Section A

No Calculators!

GRADING SCHEME

Name:

SSN:

 Score: ⁄ 50

In this section of the exam, there are Three (3) problems

You must do all of them.

The weight of each problem in this section is indicated with the problem. The

algorithms in this exam are written in C programming language notation. Partial

credit cannot be given unless all work is shown.

As always, be complete, yet concise, and above all be neat. Credit cannot be given

when your results are unreadable.

1. Convert the following infix expression to postfix, showing the values in the operator stack at
each indicated point in the infix string (points 1, 2, and 3), in the boxes below. You may add
more boxes for each position if necessary to do so. [12 points]

 A – D – L * T 1 + B / (K – F * P / 2 Y) – 3 E + M

GRADING SCHEME:
Box 1, 2, 3 [3 points each]
Resultant expression [3 points]

 /

 -

 (

* /

- + -

1 2 3

Resulting Postfix Expression : A D – L T * – B K F P * Y / – / + E – M +

 2

2. What is the output of the following program? If you think the program is not going to run
because of some errors, point out those erros. [10 points]
#include <stdio.h>
int alpha (int *px , int y , int x[], int *pz);

int main()
{
 int i, a= 2, b =10 ,c = 9;
 int d[8] = {2,3,4,5};
 int *pc, *pb;
 pc = &c;

pb = &b;
a = alpha(pc, a ,d, pb);
printf("\n%d, %d, %d\n", a, b, c);
for (i =0; i<8; i++)
printf("%d, ", d[i]);
printf("\n");

return 0;

}
int alpha(int *px, int y, int x[], int *pz)
{

int i,b = 5;
 int *p,*pn, *qn;

printf("\n %d, %d, %d",*px, y, *pz);
printf("\n");
for (i =0; i<8; i++)

printf("%d, ", x[i]);
printf("\n");
p = px;
pn = x+1;
qn =&x[2];
*pn = 15;
*qn = 8;
pn++;
*pn=12;
*(qn+3) = 20;
pn++;
pn[1] = 14;
qn =pn+1;
(*qn)++;
*p = y + *p;
*pz = 2 * b;
return (*pz + *px – y);

}

Answer:
9, 2, 10 [2 points]
2, 3, 4, 5, 0, 0, 0, 0 [2 points]
19, 10, 11 [2 points]
2, 15, 12, 5, 15, 20, 0, 0 [4 points]

3. Verify that the following code generates the Fibonacci sequence for a particular value of n.
Find its time complexity. [8 points]

int Addfib(int k, int fterm, int sterm))

 3

int fib(int k);
main ()
{
 int i,n, fib_number;
 scanf(“%d”, n);
 for (i= 0; i<=n ; i++) {

 fib_number = fib(i);
 printf(“\n %d “,fib_number);
 }
}

int fib(int k)
{
 return (Addfib(k, 0, 1));
}

int Addfib(int k, int fterm, int sterm))
{
 if (k == 0) return (fterm);
 if (k == 1) return (sterm);
 return Addfib(k-1, 1, fterm+sterm));
}

Verification: Try for n = 5
= Addfib(5,0,1)
= Addfib(4,1,1)
= Addfib(3,1,2)
= Addfib(2,2,3)
= Addfib(1,3,5)
 As k-1 is 1, at this call, it will return sterm, i.e. 5
= 5

For any value of n, the number of calls is n at end of which the result is
available. Each call involves one add operation. Thus the time complexity of
the code is O(n).

Grading Scheme: 3 points for verification
 5 points for time complexity

 4

4. Study the following code segment and indicate the time complexity using Big-O notation:
[10 points]

sum = 0;
for (jj = 2; jj <= n ; jj++) {
 for (kk = 5 ; kk <= n; kk++) {
 for (m = 1 ; m<= kk ; m++) {
 sum = sum + m;

 }
 }
}

Innermost loop is gets executed kk times for each run of second loop.
n n kk
∑ ∑ ∑ 1
jj= 2 kk=5 m=1

n n 4
∑ (∑ kk – ∑ kk)
jj= 2 kk=1 kk=1

= (n – 2 + 1) . [n(n+1)/2 – 4(5)/2]

= (n – 1) [n2 + n – 20] /2

= [n3 – 2 1 n + 20] /2

So the complexity is O(n3)

Grading:
Deduct 4 points if student finds the value of sum as the complexity.
Deduct 4 points if summation of middle loop is not broken in two parts and computed
properly.
Deduct 2 point if first summation is done from 1 to n instead of 2 to n.

 5

5. The following “add” function is supposed to add two positive integers stored in linked lists
listA and listB, and return the result in listC. The integers are stored in reverse order, one digit
per node. Thus to add the integers 7145 and 398, listA would contain the digits 5,4,1,7 and listB
would contain the digits 8,9,3 in the order shown. Each node in the linked lists has the structure
shown below. Complete the missing links. [10 points]

typedef struct node {
 int data;

struct node *next;
} list;

list* add(list* listA, list *listB) {

 list *listC, *temp;
 int firstnode = 1;
 int data1 = 0, data2 = 0, carry = 0, result;
 listC = NULL;

 while ((listA != NULL) && (listB != NULL)) { [3 points]
 if (firstnode) { //form the first node of list C
 listC = (list *)malloc(sizeof(list));
 temp = listC;
 firstnode = 0;
 }

 else { //form the other nodes
 temp -> next = (list *)malloc(sizeof(list));
 [1 point]
 temp = temp -> next;
 }

 if (listA != NULL) {
 data1 = listA -> data;
 listA = listA -> next;
 }
 else
 data1 = 0; [1 point]

 if (listB != NULL) {
 data2 = listB -> data;
 listB = listB -> next;
 }
 else
 data2 = 0;

 result = (data1 + data2 + carry)%10;
 carry = (data1 + data2 + carry)/10; [2 points]

 temp->data = result;
 temp->next = NULL;

 }// end of while loop [2 points]

 6

 if (carry != 0) { // get a node for the last carry
 temp -> next = (list *)malloc(sizeof(list)); [1 point]

 temp = temp -> next;
 temp -> data = carry;
 temp -> next = NULL;
 }

 return listC;
}

 7

	In this section of the exam, there are Three (3) problems
	Resulting Postfix Expression : A D – L T * –

