Part I. Choose exactly one question (Question 1 or Question 2) in this part to answer.

1. Let *A*, *B*, and *C* denote 3 sets. Prove that if $A \cup C = B \cup C$ and $A \cap C = B \cap C$, then A = B. (**Hint:** Let $x \in A$, then $x \in A \cup C$ is true.) We first prove $A \subset B$. Let $x \in A \dashrightarrow (1)$, we need to prove $x \in B \dashrightarrow (2)$. From (1), we have $x \in A \cup C = B \cup C$. Thus, $x \in B$ or $x \in C$. There are two cases: (Case one) Suppose $x \in B$. In this case, (2) is already true. (Case two) Suppose $x \in C$. In this case, (1) implies that $x \in A \cap C = B \cap C \subset B$. Thus, $x \in B$ is also true. Therefore, we proved (2) in both cases.

The proof for $B \subset A$ is similar, due to the symmetry of *A* and *B*. Therefore, we proved A = B. 2. Let $n \ge 1$ denote a positive integer. Answer the following two parts for this question:

(a) Prove without using induction that

 $\frac{1}{2^{n}+1} + \frac{1}{2^{n}+2} + \dots + \frac{1}{2^{n}+2^{n}} \ge \frac{1}{2}.$ (**Hint**: Explain $\frac{1}{2^{n}+i} \ge \frac{1}{2^{n}+2^{n}}$ for each *i* in the range $1 \le i \le 2^{n}$.)

Note that for each *i* in the range $1 \le i \le 2^n$, we have $2^n + i \le 2^n + 2^n$. Therefore,

$$\frac{1}{2^n + i} \quad \frac{1}{2^n + 2^n} \text{ and thus, } \frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^n + 2^n} \quad 2^n (\frac{1}{2^n + 2^n}) = \frac{1}{2}.$$

(b) Use the results of Part (a) and use induction on $n \ge 1$ to prove the following inequality:

$$\sum_{j=1}^{2^n} \frac{1}{j} \ge 1 + \frac{n}{2}.$$

(Basis Step) When n = 1. In this case,

LHS =
$$\frac{2^n}{j=1} \frac{1}{j} = \frac{2}{j=1} \frac{1}{j} = 1 + \frac{1}{2}$$
, and RHS = $1 + \frac{n}{2} = 1 + \frac{1}{2} = LHS$.

Thus, the Basis Step is proved.

(Induction Hypothesis) When n = k. Suppose

$$\frac{2^{k}}{j=1} \frac{1}{j} = 1 + \frac{k}{2}$$
 for some $k = 1$.

(Induction Step) When n = k + 1. We need to prove

$$\frac{2^{k+1}}{j=1}\frac{1}{j}$$
 $1+\frac{k+1}{2}-\cdots-(1)$

Note that LHS of (1) =
$$\sum_{j=1}^{2^k} \frac{1}{j} + \sum_{j=2^{k+1}}^{2^{k+1}} \frac{1}{j}$$
, by t finition of summation
 $1 + \frac{k}{2} + \frac{2^{k+1}}{j=2^{k+1}} \frac{1}{j}$, by the Induction Hypothesis
 $1 + \frac{k}{2} + \frac{1}{2}$, using the results of Part (a)
 $= 1 + \frac{k+1}{2}$

Therefore, the Induction Step is proved. By induction, we have proved the inequality for all $n \ge 1$.

Part II. Choose exactly one question (Question 3 or Question 4) in this part to answer.

- 3. Let $f: A \to B$ and $g: B \to C$ denote two functions. Answer the following two parts for this question:
 - (a) If both *f* and *g* are injections, then prove the composition function $g \circ f : A \to C$ is an injection.

Let $g \circ f(x) = g \circ f(y) - (1)$, we need to prove x = y - (2).

From (1), g(f(x)) = g(f(y)) ---- (3), by the definition of function composition. Since g is an injection by assumption, (3) implies f(x) = f(y), which then implies x = y because f is an injection by assumption. Thus, (2) is proved.

- (b) If the function g ∘f: A → C is a surjection, and g is an injection, then prove the function f is a surjection. (This part is independent of Part (a).)
 To prove f: A → B is a surjection, let y ∈ B ---- (1), then we need to find x ∈ A such that f(x) = y ---- (2). From (1), g(y) ∈ C. Because the function g ∘f: A → C is a surjection by assumption, there exists x ∈ A such that g ∘f(x) = g(y). Therefore, g(f(x)) = g(y) ---- (3).
 - Since g is an injection by assumption, so (3) implies f(x) = y, which proves (2).
- 4. Let *W*, *T*, and *Y* denote 3 sets of strings over an alphabet *A*. Answer the following two parts for this question:
 - (a) Prove that $(WT)^* \cup (WY)^* \subset (W(T \cup Y))^*$. Since $T \subset T \cup Y$, so $WT \subset W(T \cup Y)$, which implies $(WT)^* \subset (W(T \cup Y))^*$ ---- (1). Similarly, we can prove $(WY)^* \subset (W(T \cup Y))^*$ ---- (2). Combining (1) and (2) yields $(WT)^* \cup (WY)^* \subset (W(T \cup Y))^*$.
 - (b) Use a "small" example to show that (W(T ∪ Y))* ⊂ (WT)* ∪ (WY)* is false. Let A = {a, b}, W = {λ}, T = {a}, Y = {b}. Then, (W(T ∪ Y))* = {a, b}* = the set of all strings over symbols a and b. In particular, the string ab ∈ (W(T ∪ Y))*. However, since (WT)* = {a}* and (WY)* = {b}*, we have (WT)* ∪ (WY)* = {a}* ∪ {b}*,

thus, $ab \notin (WT)^* \cup (WY)^*$. Therefore, $(W(T \cup Y))^* \subset (WT)^* \cup (WY)^*$ is false.