Part I. Choose exactly one question (Question 1 or Question 2) in this part to answer.

1. Let A, B, and C denote 3 sets. Prove that if $A \cup C=B \cup C$ and $A \cap C=B \cap C$, then $A=B$.
(Hint: Let $x \in A$, then $x \in A \cup C$ is true.)
We first prove $A \subset B$. Let $x \in A$---- (1), we need to prove $x \in B---$ (2).
From (1), we have $x \in A \cup C=B \cup C$. Thus, $x \in B$ or $x \in C$. There are two cases:
(Case one) Suppose $x \in B$. In this case, (2) is already true.
(Case two) Suppose $x \in C$. In this case, (1) implies that $x \in A \cap C=B \cap C \subset B$. Thus, $x \in$ B is also true.
Therefore, we proved (2) in both cases.
The proof for $B \subset A$ is similar, due to the symmetry of A and B. Therefore, we proved $A=B$.
2. Let $n \geq 1$ denote a positive integer. Answer the following two parts for this question:
(a) Prove without using induction that

$$
\frac{1}{2^{n}+1}+\frac{1}{2^{n}+2}+\ldots+\frac{1}{2^{n}+2^{n}} \geq \frac{1}{2}
$$

(Hint : Explain $\frac{1}{2^{n}+i} \geq \frac{1}{2^{n}+2^{n}}$ for each i in the range $1 \leq i \leq 2^{n}$.)
Note that for each i in the range $1 \leq i \leq 2^{n}$, we have $2^{n}+i \leq 2^{n}+2^{n}$. Therefore,

$$
\frac{1}{2^{n}+i} \quad \frac{1}{2^{n}+2^{n}} \text { and thus, } \frac{1}{2^{n}+1}+\frac{1}{2^{n}+2}+\ldots+\frac{1}{2^{n}+2^{n}} \quad 2^{n}\left(\frac{1}{2^{n}+2^{n}}\right)=\frac{1}{2}
$$

(b) Use the results of Part (a) and use induction on $n \geq 1$ to prove the following inequality:

$$
\sum_{j=1}^{2^{n}} \frac{1}{j} \geq 1+\frac{n}{2}
$$

(Basis Step) When $n=1$. In this case,

$$
\mathrm{LHS}={ }_{j=1}^{2^{n}} \frac{1}{j}={ }_{j=1}^{2} \frac{1}{j}=1+\frac{1}{2} \text {, and } \mathrm{RHS}=1+\frac{n}{2}=1+\frac{1}{2}=\mathrm{LHS} .
$$

Thus, the Basis Step is proved.
(Induction Hypothesis) When $n=k$. Suppose

$$
{ }_{j=1}^{2^{k}} \frac{1}{j} \quad 1+\frac{k}{2} \text { for some } k
$$

(Induction Step) When $n=k+1$. We need to prove

$$
{ }_{j=1}^{2^{k+1}} \frac{1}{j} \quad 1+\frac{k+1}{2}---(1)
$$

Note that LHS of $(1)={ }_{j=1}^{2^{k}} \frac{1}{j}+{ }_{j=2^{k}+1}^{2^{k+1}} \frac{1}{j}$, by t finition of summation

$$
\begin{aligned}
& 1+\frac{k}{2}+{ }_{j=2^{k}+1}^{2^{k+1}} \frac{1}{j}, \text { by the Induction Hypothesis } \\
& 1+\frac{k}{2}+\frac{1}{2}, \text { using the results of Part (a) } \\
= & 1+\frac{k+1}{2}
\end{aligned}
$$

Therefore, the Induction Step is proved. By induction, we have proved the inequality for all $n \geq 1$.

Part II. Choose exactly one question (Question 3 or Question 4) in this part to answer.

3. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ denote two functions. Answer the following two parts for this question:
(a) If both f and g are injections, then prove the composition function g of $: A \rightarrow C$ is an injection.
Let $g \circ f(x)=g \circ f(y)----(1)$, we need to prove $x=y----(2)$.
From (1), $g(f(x))=g(f(y))---$ (3), by the definition of function composition. Since g is an injection by assumption, (3) implies $f(x)=f(y)$, which then implies $x=y$ because f is an injection by assumption. Thus, (2) is proved.
(b) If the function g of: $A \rightarrow C$ is a surjection, and g is an injection, then prove the function f is a surjection. (This part is independent of Part (a).)
To prove $f: A \rightarrow B$ is a surjection, let $y \in B$---- (1), then we need to find $x \in A$ such that $f(x)=y$--- (2). From (1), $g(y) \in C$. Because the function g of $A \rightarrow C$ is a surjection by assumption, there exists $x \in A$ such that $g \circ f(x)=g(y)$. Therefore, $g(f(x))=g(y)$---- (3). Since g is an injection by assumption, so (3) implies $f(x)=y$, which proves (2).
4. Let W, T, and Y denote 3 sets of strings over an alphabet A. Answer the following two parts for this question:
(a) Prove that $(W T)^{*} \cup(W Y)^{*} \subset(W(T \cup Y))^{*}$.

Since $T \subset T \cup Y$, so $W T \subset W(T \cup Y)$, which implies $(W T)^{*} \subset(W(T \cup Y))^{*}---(1)$.
Similarly, we can prove $(W Y)^{*} \subset(W(T \cup Y))^{*}----(2)$.
Combining (1) and (2) yields $(W T)^{*} \cup(W Y)^{*} \subset(W(T \cup Y))^{*}$.
(b) Use a "small" example to show that $(W(T \cup Y))^{*} \subset(W T)^{*} \cup(W Y)^{*}$ is false.

Let $A=\{a, b\}, W=\{\lambda\}, T=\{a\}, Y=\{b\}$. Then,
$(W(T \cup Y))^{*}=\{a, b\}^{*}=$ the set of all strings over symbols a and b.
In particular, the string $a b \in(W(T \cup Y))^{*}$.
However, since $(W T)^{*}=\{a\}^{*}$ and $(W Y)^{*}=\{b\}^{*}$, we have
$(W T)^{*} \cup(W Y)^{*}=\{a\}^{*} \cup\{b\}^{*}$,
thus, $a b \notin(W T)^{*} \cup(W Y)^{*}$. Therefore, $(W(T \cup Y))^{*} \subset(W T)^{*} \cup(W Y)^{*}$ is false.

