
reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

Image-based Lighting

09
9.1 INTRODUCTION

The previous chapters in this book have described numerous properties and advan-
tages of HDR imagery. A major advantage is that HDR pixel values can cover the full
range of light in a scene and can be stored as calibrated linear-response measure-
ments of incident illumination. Earlier chapters have described how these images are
useful for improved image processing, and for determining how a human observer
might perceive a real-world scene, even if shown on an LDR display.

This chapter describes how HDR images can be used as sources of illumina-
tion for computer-generated objects and scenes. Because HDR images record the
full range of light arriving at a point in space, they contain information about the
shape, color, and intensity of direct light sources, as well as the color and distri-
bution of the indirect light from surfaces in the rest of the scene. Using suitable
rendering algorithms, we can use HDR images to accurately simulate how objects
and environments would look if they were illuminated by light from the real world.
This process of using images as light sources is called image-based lighting (IBL). In that
IBL generally involves the use of HDR images, both the IBL process and the HDR
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images used for IBL are sometimes referred to as HDRI for high-dynamic-range
imagery.

Figure 9.1 compares a simple scene illuminated by a traditional computer graph-
ics light source (a) to its appearance as illuminated by three different image-based
lighting environments (b through d). The scene’s geometry consists of simple
shapes and materials such as plastic, metal, and glass. In all of these images, the

(a) (b)

(c) (d)

FIGURE 9.1 Scene illuminated with (a) a traditional point light source. Scene illuminated with
(b–d) HDR image-based lighting environments, including (b) sunset on a beach, (c) inside a
cathedral with stained-glass windows, and (d) outside on a cloudy day.
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lighting is being simulated using the RADIANCE global illumination system [205].
Without IBL (a), the illumination is harsh and simplistic, and the scene appears
noticeably computer generated. With IBL (b through d), the scene’s level of realism
and visual interest are increased — the shadows, reflections, and shading all exhibit
complexities and subtleties that are realistic and internally consistent. In each ren-
dering, a view of the captured environment appears in the background behind the
objects. As another benefit of IBL, the objects appear to actually belong within the
scenes that are lighting them.

In addition to HDR photography, IBL leverages two other important processes.
One of them is omnidirectional photography, the process of capturing images that
see in all directions from a particular point in space. HDR images used for IBL
generally need to be omnidirectional, because light coming from every direction
typically contributes to the appearance of real-world objects. This chapter describes
some common methods of acquiring omnidirectional HDR images, known as light
probe images or HDR environment maps, which can be used as HDR image-based lighting
environments.

The other key technology for IBL is global illumination: rendering algorithms that
simulate how light travels from light sources, reflects between surfaces, and pro-
duces the appearance of the computer-generated objects in renderings. Global illu-
mination algorithms simulate the interreflection of light between diffuse surfaces,
known as radiosity [170], and can more generally be built on the machinery of ray
tracing [206] to simulate light transport within general scenes according to the render-
ing equation [175]. This chapter describes how such algorithms operate and demon-
strates how they can be used to illuminate computer-generated scenes and objects
with light captured in light probe images.

An important application of IBL is in the area of motion picture visual effects,
where a common effect is to add computer-generated objects, creatures, and actors
into filmed imagery as if they were really there when the scene was photographed.
A key part of this problem is to match the light on the CG elements to be plausibly
consistent with the light present within the environment. With IBL techniques, the
real illumination can be captured at the location the CG object needs to be placed,
and then used to light the CG element so that it has the same shading, shadows, and
highlights as if it were really in the scene. Using this lighting as a starting point,
visual effects artists can augment and sculpt the image-based lighting to achieve
effects that are both dramatic and realistic.
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Within the scope of IBL, there are several variants and extensions that increase
the range of application of the technique. When implemented naïvely in global il-
lumination software, IBL renderings can be computationally expensive for scenes
with concentrated light sources. This chapter presents both user-guided and auto-
matic techniques for importance sampling that make IBL calculations more efficient. In
addition, various approximations of IBL can produce convincing results for many
materials and environments, especially under appropriate artistic guidance. One is
environment mapping, a precursor to IBL that yields extremely efficient and often con-
vincing renderings by directly mapping images of an environment onto object sur-
faces. Another technique, ambient occlusion, uses some of IBL’s machinery to approxi-
mate an object’s self-shadowing so that it can be quickly applied to different lighting
environments. To begin, we will start with a detailed example of IBL in a relatively
basic form.

9.2 BASIC IMAGE-BASED LIGHTING

This section describes image-based lighting in both theoretical and practical terms
using the example of Rendering with Natural Light (RNL), an IBL animation shown at the
SIGGRAPH 98 Electronic Theater. The RNL scene is a still life of computer-generated
spheres on a pedestal, and is illuminated by light captured in the Eucalyptus grove
at the University of California at Berkeley. The animation was modeled, rendered,
and illuminated using the RADIANCE lighting simulation system [205], and the
necessary scene files and images for creating the animation are included on the
companion DVD-ROM. The animation was created via the following steps:

1 Acquire and assemble the light probe image.
2 Model the geometry and reflectance of the scene.
3 Map the light probe to an emissive surface surrounding the scene.
4 Render the scene as illuminated by the IBL environment.
5 Postprocess and tone map the renderings.

9 . 2 . 1 A C Q U I R E A N D A S S E M B L E T H E L I G H T P RO B E

The lighting environment for RNL was acquired in the late afternoon using a three-
inch chrome bearing and a digital camera. The mirrored ball and a digital video
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camera were placed on tripods about 4 feet from each other and 3.5 feet off the
ground.1 The digital video camera was zoomed until the sphere filled the frame,
and the focus was set so that the reflected image was sharp. The camera’s aperture
was narrowed to f/8 to allow for sufficient depth of field, and an HDR image series
was acquired with shutter speeds varying from 1

4 second to 1
10,000 second, spaced

one stop apart. To cover the scene with better sampling, a second series was acquired
after having moved the camera 90 degrees around to see the ball from the side (see
Section 9.3.1). The process took only a few minutes and the resulting image series
can be seen in Figures 9.2(a) and 9.2(c).

Mirrored spheres reflect nearly the entire environment they are in — not, as
sometimes assumed, just the hemisphere looking back in the direction of the cam-
era. This follows from the basic mirror formula that the angle of incidence is equal
to the angle of reflection: rays near the outer edge of a sphere’s image have an an-
gle of reflection toward the camera that nears 90 degrees, and thus their angle of
incidence also nears 90 degrees. Thus, the ray’s angle of incidence relative to the
camera nears 180 degrees, meaning that the rays originate from nearly the opposite
side of the sphere relative to the camera.

Each image series of the sphere was converted into an HDR image using the HDR
image assembly algorithm in Debevec and Malik [164] (Chapter 4), and the images
were saved in RADIANCE’s native HDR image format (Chapter 3). The algorithm
derived the response curve of the video camera and produced HDR images where
the pixel values were proportional to the light values reflected by the mirrored
sphere. The total dynamic range of the scene was approximately 5,000:1, measuring
from the dark shadows beneath the bushes to the bright blue of the sky and the thin
white clouds lit from behind by the sun. As another measure of the range, the
brightest pixel values in the sky and cloud regions were some 150 times the average
level of light in the scene. The two views of the sphere were combined (using
techniques presented in Section 9.3.1) and mapped into the angular map space
(described in Section 9.4.2) to become the light probe image seen in Figure 9.2(b).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Many tripods allow the center pole (the vertical pole the tripod head is attached to) to be removed from the legs and

reinserted upside-down, leaving the end of the pole pointing up and able to accommodate a mirrored sphere.
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(a) (b) (c)

FIGURE 9.2 The two HDRI series (a and c) used to capture the illumination in the Eucalyptus
grove for RNL, and the resulting combined light probe image (b), converted into the Angular Map
format.

9 . 2 . 2 M O D E L T H E G E O M E T RY A N D R E F L E C TA N C E O F
T H E S C E N E

The RNL scene’s spheres, stands, and pedestal were modeled using RADIANCE’s
standard scene primitives and generators. Each sphere was given a different material
property with different colors of glass, metal, and plastic. The pedestal itself was



reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 7

9.2 BASIC IMAGE-BASED LIGHTING 373

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

texture mapped with a polished marble texture. The scene specification files are
included on the companion DVD-ROM as rnl_scene.rad and gensup.sh.

9 . 2 . 3 M A P T H E L I G H T P RO B E T O A N E M I S S I V E
S U R F A C E S U R RO U N D I N G T H E S C E N E

In IBL, the scene is surrounded (either conceptually or literally) by a surface that
the light probe image is mapped onto. In the simplest case, this surface is an in-
finite sphere. The RNL animation used a large but finite inward-pointing cube,
positioned so that the bottom of the pedestal sat centered on the bottom of the
cube (Figure 9.3). The light probe image was mapped onto the inner surfaces of

FIGURE 9.3 The RNL pedestal is seen within the large surrounding box, texture mapped with
the Eucalyptus Grove light probe image.
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the cube so that from the perspective of the top of the pedestal the light from
the environment would come from substantially the same directions as it would
have in the forest. The RADIANCE shading language was sufficiently general to al-
low this mapping to be specified in a straightforward manner. When a ray hits a
surface, it reports the 3D point of intersection P = (Px,Py,Pz) to user-supplied
equations that compute the texture map coordinate for that point of the surface.
In the RNL scene, the top of the pedestal was at the origin, and thus the direc-
tion vector into the probe was simply the vector pointing toward P . From this
direction, the (u, v) coordinates for the corresponding pixel in the light probe
image are computed using the angular map equations in Section 9.4.2. These
calculations are specified in the file angmap.cal included on the companion
DVD-ROM.

In IBL, the surface surrounding the scene is specified to be emissive, so that its
texture is treated as a map of light emanating from the surface rather than a map
of surface reflectance. In RADIANCE this is done by assigning this environment the
glow material, which tells the renderer that once a ray hits this surface the radiance
along the ray should be taken directly as the HDR color in the image, rather than
the product of the texture color and the illumination incident upon it. When the
environment surface is viewed directly (as in most of Figure 9.3), it appears as an
image-based rendering with the same pixel colors as in the original light probe
image.

9 . 2 . 4 R E N D E R T H E S C E N E A S I L L U M I NAT E D B Y T H E
I B L E N V I RO N M E N T

With the scene modeled and the light probe image mapped onto the surround-
ing surface, RADIANCE was ready to create the renderings using IBL. Appropriate
rendering parameters were chosen for the number of rays to be used per pixel,
and a camera path was animated to move around and within the scene. RADIANCE
simulated how the objects would look as if illuminated by the light from the envi-
ronment surrounding them. Some renderings from the resulting image sequence
are shown in Figure 9.4. This lighting process is explained in further detail in
Section 9.5.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 9.4 Three frames from Rendering with Natural Light. Rendered frames (a, c, and e)
before postprocessing. After postprocessing (b, d, and f) as described in Section 9.2.5.
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9 . 2 . 5 P O S T P RO C E S S T H E R E N D E R I N G S

A final step in creating an IBL rendering or animation is to choose how to tone
map the images for display. RADIANCE and many recent rendering systems can
output their renderings as HDR image files. Because of this, the RNL renderings
exhibited the full dynamic range of the original lighting environment, including
the very bright areas seen in the sky and in the specular reflections of the glossy
spheres. Because the renderings exhibit a greater dynamic range than can be shown
on typical displays, some form of tone mapping is needed to produce the final dis-
playable images. The most straightforward method of tone mapping is to pick a
visually pleasing exposure factor for the image, truncate the bright regions to the
maximum “white” value of the display, and apply any needed compensation for the
response curve of the display (most commonly, applying a gamma-correction func-
tion). With this technique, values below the white point are reproduced accurately,
but everything above the white point is clipped.

Chapters 6, 7, and 8 discussed several tone-reproduction operators that reduce
the dynamic range of an image in a natural way to fall within the range of the dis-
play, any of which could be used for postprocessing IBL images. Another approach
to postprocessing HDR images is to simulate some of the optical imperfections of
a real camera system that communicate the full dynamic range of bright regions
through blooming and vignetting effects. Such operators often work well in con-
junction with IBL rendering because, like IBL, they are designed to simulate the
appearance of photographic imagery.

Let’s first examine how a blurring operator can communicate the full dynamic
range of a scene even on an LDR display. The top of Figure 9.5 shows two bright
square regions in an image. In the HDR image file, the right-hand square is six
times brighter than the left (as seen in the graph below the squares). However,
because the maximum “white” point of the display is below the brightness of the
dimmer square the displayed squares appear to be the same intensity. If we apply
a Gaussian blur convolution to the HDR pixel values, the blurred squares appear
very different, even when clipped to the display’s white point. The dim blurred
square now falls considerably below the white point, whereas the middle of the
bright blurred square still exceeds the range of the display. The brighter region also
appears larger, even though the regions were originally the same size and are filtered
with the same amount of blur. This effect is called blooming.
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(a) Before blur (b) After blur

FIGURE 9.5 Two bright image squares (a) with pixel values 1.5 and 6 are shown on a display
with a white point of 1. Because of clipping, the squares appear the same. A graph of pixel intensity
for a scan line passing through the centers of the squares is shown below, with “white” indicated
by the dotted line. After applying a Gaussian blur (b), the blurred squares are very different in
appearance, even though they are still clipped to the display white point.

Similar blooming effects are seen frequently in real photographs, in which blur
can be caused by any number of factors, including camera motion, subject motion,
image defocus, “soft focus” filters placed in front of the lens, dust and coatings on
lens surfaces, and scattering of light within the air and image sensor. Figure 9.6(a)
shows an image acquired in HDR taken inside Stanford’s Memorial church. When a
clipped LDR version of the image is blurred horizontally (Figure 9.6(b)), the bright
stained-glass windows become noticeably darker. When the HDR version of the
image is blurred with the same filter (Figure 9.6(c)), the windows appear as vibrant
bright streaks, even when clipped to the white point of the display. In addition to
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(a) (b)

(c) (d)

FIGURE 9.6 An HDR scene inside a church with bright stained-glass windows. (b) Horizontally
blurring the clipped LDR image gives the effect of image motion, but it noticeably darkens the
appearance of the stained-glass windows. (c) Blurring an HDR image of the scene produces bright
and well-defined streaks from the windows. (d) Real motion blur obtained by rotating camera
during the exposure validates the HDR blurring simulated in image c.
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the HDR image series, the photographer also acquired a motion-blurred version
of the church interior by rotating the camera on the tripod during a half-second
exposure (Figure 9.6(d)). The bright streaks in this real blurred image (though not
perfectly horizontal) are very similar to the streaks computed by the HDR blurring
process seen in Figure 9.6(c), and dissimilar to the LDR blur seen in Figure 9.6(d).

The renderings for Rendering with Natural Light were postprocessed using a summa-
tion of differently blurred versions of the renderings produced by RADIANCE. Each
final image used in the film was a weighted average of several differently blurred
versions of the image. All of the blur functions used in RNL were Gaussian filters,
and their particular mixture is illustrated in Figure 9.7.

With the right techniques, such blurring processes can be performed very effi-
ciently, even though convolving images with wide filters is normally computation-
ally expensive. First, Gaussian filters are separable, so that the filter can be performed

I ′ = 3
4 Blur(I,1) + 1

10 Blur(I,15)

+ 1
10 Blur(I,50) + 1

20 Blur(I,150)

FIGURE 9.7 The mix of blur filters used to postprocess the RNL frames. Blur(I, σ ) indicates
a Gaussian blur with a standard deviation of σ pixels.
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as a 1D Gaussian blur in x followed by a 1D Gaussian blur in y. Second, a Gaussian
blur can be closely approximated as several successive box blurs. Finally, the wider
blurs can be closely approximated by applying correspondingly narrower blurring
filters to a low-resolution version of the image, and then up-sampling the small
blurred version. With these enhancements, efficient implementations of such tech-
niques can be achieved on modern GPUs [187], and considerably more elaborate
lens flare effects can be performed in real time [176].

Postprocessed frames from RNL can be seen in the right-hand column of Fig-
ure 9.4. Because the final postprocessed images are 75% composed of the original
renderings with just a slight blur applied, the original image detail is still evident.
However, because of the other blurred versions added, the bright parts of the envi-
ronment and their specular reflections tend to bloom in the final renderings. Often,
as in Figure 9.7, the bloom from bright spots in the environment appears to “wrap”
around objects in the foreground. This is a surprisingly natural effect that helps the
rendered objects appear to belong within the rest of the scene.

As mentioned previously, this postprocessing of HDR imagery is a form of tone
mapping, the effects of which are similar to the results produced by using “soft
focus,” “mist,” and “fog” filters on real camera lenses. The effects are also similar to
the effects of the optical imperfections of the human eye. A detailed model of the
particular glare and bloom effects produced in the human eye is constructed and
simulated by Spencer et al. [198]. In addition, a basic model of human eye glare
was used in conjunction with a tone-reproduction operator by Larson et al. [180].

A final subtle effect applied to the renderings in RNL is vignetting. Vignetting is
the process of gently darkening the pixel values of an image toward its corners,
which occurs naturally in many camera lenses (particularly at wide apertures) and
is sometimes intentionally exaggerated with an additional mask or iris for photo-
graphic effect. Applying this effect to an HDR image before tone mapping the pixel
values can also help communicate a greater sense of the range of light in a scene,
particularly in animations. With this effect, as a bright region moves from the center
of the field of view to the edge, the pixels around it dim. However, its particularly
bright pixels will still reach the white point of the display. Thus, different exposures
of the scene are revealed in a natural manner simply through camera motion. The
effect is easily achieved by multiplying an image by a brightness falloff image such
as in Figure 9.8(a). Figures 9.8(b) and 9.8(c) show a rendering from RNL before
and after vignetting.
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(a) (b) (c)

FIGURE 9.8 Via the brightness fall-off function shown in image (a), a frame from the RNL
animation is seen (b) before and (c) after vignetting. In this image, this operation darkens the
right-side image corners, reveals detail in the slightly overexposed upper left corner, and has little
effect on the extremely bright lower left corner. In motion, this vignetting effect helps communicate
the HDR environment on an LDR display.

As an early IBL example, RNL differed from most CG animations in that de-
signing the lighting in the scene was a matter of choosing real light from a
real location rather than constructing the light as an arrangement of computer-
generated light sources. Using global illumination to simulate the image-based
lighting naturally produced shading, highlights, refractions, and shadows that were
consistent with one another and with the environment surrounding the scene.
With traditional CG lighting, such an appearance would have been difficult to
achieve.

9.3 CAPTURING LIGHT PROBE IMAGES

Moving on from our basic example, the next few sections present the key stages
of IBL with greater generality and detail, beginning with the process of lighting
capture. Capturing the incident illumination at a point in space requires taking an
image with two properties. First, it must see in all directions, in that light coming
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from anywhere can affect the appearance of an object. Second, it must capture the
full dynamic range of the light within the scene, from the brightest concentrated
light sources to the dimmer but larger areas of indirect illumination from other
surfaces in the scene. In many cases, the standard HDR photography techniques
presented in Chapter 4 satisfy this second requirement. Thus, the remaining chal-
lenge is to acquire images that see in all directions, a process known as panoramic
(or omnidirectional) photography. There are several methods of recording images
that see in all directions, each with advantages and disadvantages. In this section,
we describe some of the most common techniques, which include using mirrored
spheres, tiled photographs, fish-eye lenses, and scanning panoramic cameras. This
section concludes with a discussion of how to capture light probe images that in-
clude a direct view of the sun, which is usually too bright to record with standard
HDR image capture techniques.

9 . 3 . 1 P H O T O G R A P H I N G A M I R RO R E D S P H E R E

The technique used to capture the Rendering with Natural Light light probe was to pho-
tograph a mirrored sphere placed in the scene where it is desired to capture the
illumination. Using mirrored spheres to obtain omnidirectional reflections of an
environment was first used for environment mapping [186,207,171] (described in Sec-
tion 9.8.1), where such images are directly texture mapped onto surfaces of objects.
The main benefit of photographing a mirrored sphere is that it reflects very nearly
the entire environment in a single view. Aside from needing two tripods (one for
the sphere and one for the camera), capturing a light probe image with this tech-
nique can be fast and convenient. Mirrored spheres are inexpensively available as 2-
to 4-inch diameter chrome ball bearings (available from the McMaster–Carr cata-
log, www.mcmaster.com), 6- to 12-inch mirrored glass lawn ornaments (available from
Baker’s Lawn Ornaments, www.bakerslawnorn.com), and Chinese meditation balls (1.5
to 3 inches). Dubé juggling equipment (www.dube.com) sells polished hollow chrome
spheres from 2-1/6 to 2-7/8 inches in diameter. Professionally manufactured mir-
rored surfaces with better optical properties are discussed at the end of this section.

There are several factors that should be considered when acquiring light probe
images with a mirrored sphere. These are discussed in the sections that follow.



reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 17

9.3 CAPTURING LIGHT PROBE IMAGES 383

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

Framing and Focus First, it is desirable to have the sphere be relatively far from the
camera to minimize the size of the camera’s reflection and to keep the view nearly
orthographic. To have the sphere be relatively large in the frame, it is necessary
to use a long-focal-length lens. Many long lenses have difficulty focusing closely
on small objects, and thus it may be necessary to use a +1 diopter close-up filter
(available from a professional photography store) on the lens to bring the sphere
into focus. The image of the sphere usually has a shallow depth of field, especially
when a close-up filter is used, and thus it is often necessary to use an aperture of
f/8 or smaller to bring the full image into focus.

Blind Spots There are several regions in a scene that are usually not captured
well by a mirrored sphere. One is the region in front of the sphere, which re-
flects the camera and often the photographer. Another is the region directly behind
the sphere, which is reflected by a thin area around the sphere’s edge. The last is
a strip of area from straight down and connecting to the area straight back, which
usually reflects whatever supports the sphere. For lighting capture, these effects are
easily minimized by orienting the camera so that no photometrically interesting ar-
eas of the scene (e.g., bright light sources) fall within these regions. However, it is
sometimes desirable to obtain clear images of all directions in the environment, for
example when the light probe image itself will be seen in the background of the
scene. To do this, one can take two HDR images of the mirrored sphere, with the
second rotated 90 degrees around from the first. In this way, the poorly represented
forward and backward directions of one sphere correspond to the well-imaged left
and right directions of the other, and vice versa. The two images taken for the RNL
light probe are shown in Figure 9.9. Each image slightly crops the top and bottom
of the sphere, which was done intentionally to leverage the fact that these areas
belong to the rear half of the environment that appears in the other sphere image.
Using an HDR image-editing program such as HDR Shop [202], these two images
can be combined into a single view of the entire environment that represents all di-
rections well except straight down. If needed, this final area could be filled in from
a photograph of the ground or through manual image editing.

Calibrating Sphere Reflectivity It is important to account for the fact that mir-
rored spheres are generally not optically perfect reflectors. Though the effect is often
unnoticed, ball bearings typically reflect only a bit more than half of the light hitting
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FIGURE 9.9 Acquiring a light probe with a mirrored sphere. (a) and (b) show two images of
the sphere, taken 90 degrees apart. (c) and (d) show the mirrored sphere images transformed into
latitude-longitude mappings. In (d), the mapping has been rotated 90 degrees to the left to line
up with the mapping of (c). The black teardrop shapes correspond to the cropped regions at the
top and bottom of each sphere, and the pinched area between each pair of drops corresponds to the
poorly sampled region near the outer edge of the sphere image. Each sphere yields good image data
where the other one has artifacts, and combining the best regions of each can produce a relatively
seamless light probe image, as in Figure 9.2.
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them. In some IBL applications, the lighting is captured using a mirrored sphere,
and the background image of the scene is photographed directly. To correct the
sphere image so that it is photometrically consistent with the background, we need
to measure the reflectivity of the sphere. This can be done using a setup such as
that shown in Figure 9.10. In this single photograph, taken with a radiometrically
calibrated camera, the indicated patch of diffuse paper is reflected in the ball. We
can thus divide the average pixel value of the patch in the reflection by the average
pixel value in the direct view to obtain the sphere’s percent reflectivity in each of
the red, green, and blue channels. A typical result would be (0.632, 0.647, 0.653).
Often, these three numbers will be slightly different, indicating that the sphere tints
the incident light. The light probe image can be corrected to match the background
by dividing its channels by each of these numbers.

FIGURE 9.10 The reflectivity of a mirrored sphere can be determined by placing the sphere
near an easy-to-identify part of a diffuse surface, and comparing its brightness seen directly to its
appearance as reflected in the sphere. In this case, the sphere is 59% reflective.
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Nonspecular Reflectance Mirrored spheres usually exhibit a faint diffuse or
rough specular component due to microscopic scratches and deposits on their sur-
face. It is best to keep the spheres in cloth bags to minimize such scratching, as well
as to keep them dry so that the surface does not oxidize. A slight rough specular
component usually makes little difference in how light probe images illuminate CG
objects, but when viewed directly the reflected image may lack contrast in dark re-
gions and exhibit bright flares around the light sources. If an application requires a
near-perfectly shiny mirrored surface, one can have a glass or metal sphere or hemi-
sphere specially coated with a thin layer of aluminum by an optical coating company
(only half a sphere can be photographed at once, and thus in practice a hemisphere
can also be used as a light probe). Such coated optics yield extremely clear specular
reflections and can be up to 91% reflective. Some experiments in capturing the sky
using such optics can be found in Stumpfel [199].

Polarized Reflectance Mirrored spheres behave somewhat unexpectedly with re-
spect to polarization. Light that reflects from a sphere at angles next to the outer
rim becomes polarized, an effect characterized by Fresnel’s equations [168]. Cam-
era sensors generally record light irrespective of polarization, so this itself is not a
problem.2 However, for the same reasons, polarized light reflecting from a mirrored
sphere can appear either too bright or too dim compared to being viewed directly.
This is a significant effect in outdoor environments, where the scattered blue light
of the sky is significantly polarized. This problem can be substantially avoided by
using highly reflective mirror coatings (as discussed previously).

Image Resolution It can be difficult to obtain a particularly high-resolution image
of an environment as reflected in a mirrored sphere, because only one image is used
to cover a fully spherical field of view. For lighting CG objects, the need for highly
detailed light probe images is not great: only large and very shiny objects reflect light
in a way that fine detail in an environment can be noticed. However, for forming
virtual backgrounds behind CG objects it is often desirable to have higher-resolution
imagery. In the RNL animation, the low resolution of the light probe image used

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Whereas sensors tend to detect different polarization directions equally, wide-angle lenses can respond differently ac-

cording to polarization for regions away from the center of the image.
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for the background produced the reasonably natural appearance of a shallow depth
of field, even though no depth of field effects were simulated.

Photographing a mirrored sphere is an example of a catadioptric imaging system in
that it involves both a lens and a reflective surface. In addition to mirrored spheres,
other shapes can be used that yield different characteristics of resolution, depth of
field, and field of view. One example of a well-engineered omnidirectional video
camera covering slightly over a hemispherical field of view is presented in Nayer
[188]. Nonetheless, for capturing illumination wherein capturing the full sphere is
more important than high image resolution, mirrored spheres are often the most
easily available and convenient method.

9 . 3 . 2 T I L E D P H O T O G R A P H S

Omnidirectional images can also be captured by taking a multitude of photographs
looking in different directions and “stitching” them together — a process made fa-
miliar by QuickTime VR panoramas [156]. This technique can be used to assemble
remarkably high-resolution omnidirectional images using a standard camera and
lens. Unfortunately, the most commonly acquired panoramas see all the way around
the horizon but only with a limited vertical field of view. For capturing lighting, it is
important to capture imagery looking in all directions, particularly upward, because
this is often where much of the light comes from. Images taken to form an omnidi-
rectional image will align much better if the camera is mounted on a nodal rotation
bracket, which can eliminate viewpoint parallax between the various views of the
scene. Such brackets are available commercially from companies such as Kaidan
(www.kaidan.com). Some models allow the camera to rotate around its nodal center
for both the horizontal and vertical axes.

Figure 9.11 shows tone-mapped versions of the source HDR images for the
“Uffizi Gallery” light probe image [160], which was acquired as an HDR tiled
panorama. These images were aligned by marking pairs of corresponding points
between the original images and then solving for the best 3D rotation of each image
to minimize the distance between the marked points. The images were then blended
across their edges to produce the final full-view latitude-longitude mapping. This
image was used as the virtual set and lighting environment for the middle sequence
of the animation Fiat Lux.
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FIGURE 9.11 (a) The Uffizi light probe was created from an HDR panorama with two rows
of nine HDR images. (b) The assembled light probe in latitude-longitude format. (c) Synthetic
objects added to the scene, using the light probe as both the virtual background and the lighting
environment.
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A more automatic algorithm for assembling such full-view panoramas is de-
scribed in [201], and commercial image-stitching products such as QuickTime VR
(www.apple.com/quicktime/qtvr/) and Realviz Stitcher (www.realviz.com) allow one to in-
teractively align images taken in different directions to produce full-view panora-
mas in various image formats. Unfortunately, at the time of writing no commercial
products natively support stitching HDR images. Digital photographer Greg Down-
ing (www.gregdowning.com) has described a process [166] for stitching each set of
equivalent exposures across the set of HDR images into its own panorama, and then
assembling this series of LDR panoramas into a complete light probe image. The
key is to apply the same alignment to every one of the exposure sets: if each set
were aligned separately, there would be little chance of the final stitched panoramas
aligning well enough to be assembled into an HDR image. To solve this problem,
Downing uses Realviz Stitcher to align the exposure level set with the most image
detail and saves the alignment parameters in a way that they can be applied identi-
cally to each exposure level across the set of views. These differently exposed LDR
panoramas can then be properly assembled into an HDR panorama.

9 . 3 . 3 F I S H - E Y E L E N S E S

Fish-eye lenses are available for most single-lens reflex cameras and are capable of
capturing 180 degrees or more of an environment in a single view. As a result, they
can cover the full view of an environment in as few as two images. In Greene [171],
a fish-eye photograph of the sky was used to create the upper half of a cube map
used as an environment map. Although fish-eye lens images are typically not as sharp
as regular photographs, light probe images obtained using fish-eye lenses are usu-
ally of higher resolution than those obtained by photographing mirrored spheres.
A challenge in using fish-eye lenses is that not all 35-mm digital cameras capture the
full field of view of a 35-mm film camera due to having a smaller image sensor. In
this case, the top and bottom of the circular fish-eye image are usually cropped off.
This can require taking additional views of the scene to cover the full environment.
Fortunately, recently available digital cameras, such as the Canon EOS 1Ds and the
Kodak DCS 14n, have image sensor chips that are the same size as 35-mm film (and
no such cropping occurs).

Fish-eye lenses can exhibit particularly significant radial intensity fall-off, also
known as vignetting. As with other lenses, the amount of falloff tends to increase with



reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 24

390 CHAPTER 09. IMAGE-BASED LIGHTING

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

the size of the aperture being used. For the Sigma 8-mm fish-eye lens, the amount
of falloff from the center to the corners of the image is more than 50% at its widest
aperture of f/4. The falloff curves can be calibrated by taking a series of photographs
of a constant intensity source at different camera rotations and fitting a function to
the observed image brightness data. This surface can be used to render an image of
the flat-field response of the camera. With this image, any HDR image obtained with
the camera can be made radiometrically consistent across its pixels by dividing by
the image of the flat-field response. An example of this process is described in more
detail in [200].

9 . 3 . 4 S C A N N I N G PA N O R A M I C C A M E R A S

Scanning panoramic cameras are capable of capturing particularly high-resolution
omnidirectional HDR images. These cameras use narrow image sensors that are typ-
ically 3 pixels wide and several thousand pixels tall. The three columns of pixels are
filtered by red, green, and blue filters, allowing the camera to sense color. A precise
motor rotates the camera by 360 degrees over the course of a few seconds to a few
minutes, capturing a vertical column of the panoramic image many times per sec-
ond. When a fish-eye lens is used, the full 180-degree vertical field of view can be
captured from straight up to straight down. Two cameras based on this process are
made by Panoscan and Spheron VR (Figure 9.12).

Trilinear image sensors, having far fewer pixels than area sensors, can be de-
signed with more attention given to capturing a wide dynamic range in each expo-
sure. Nonetheless, for IBL applications in which it is important to capture the full
range of light, including direct views of concentrated light sources, taking multiple
exposures is usually still necessary. The Panoscan camera’s motor is able to precisely
rewind and repeat its rotation, allowing multiple exposures to be taken and assem-
bled into an HDR image without difficulty. The Spheron VR camera (see also Section
4.9.4) can be ordered with a special HDR feature in which the image sensor rapidly
captures an HDR series of exposures for each column of pixels as the camera head
rotates. These differently exposed readings of each pixel column can be assembled
into HDR images from just one rotation of the camera.

For these cameras, the speed of scanning is limited by the amount of light in
the scene. Suppose that at the chosen f-stop and ISO setting it takes 1

125 of a sec-
ond to obtain a proper exposure of the shadows and midtones of a scene. If the
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(a)

(b)

FIGURE 9.12 (a) The Spheron scanning panoramic camera. (b) A tone-mapped version of a
high-resolution omnidirectional HDR image taken with the camera. Panorama courtesy of Ted
Chavalas of Panoscan, Inc.

image being acquired is 12,000 pixels wide, the camera must take at least 96 sec-
onds to scan the full panorama. Fortunately, shooting the rest of the HDR image
series to capture highlights and light sources takes considerably less time because
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each shutter speed is shorter, typically at most one-fourth the length for each addi-
tional exposure. Although capturing lighting with scanning panoramic cameras is
not instantaneous, the resulting lighting environments can have extremely detailed
resolution. The high resolution also enables using these images as background plates
or to create image-based models for 3D virtual sets.

9 . 3 . 5 C A P T U R I N G E N V I RO N M E N T S W I T H V E RY
B R I G H T S O U R C E S

For image-based lighting, it is important that the acquired light probe images cover
the full dynamic range of light in the scene up to and including light sources. If
99.99% of a light probe image is recorded properly but 0.01% of the pixel values
are saturated, the light captured could still be very inaccurate depending on how
bright the saturated pixels really should have been. Concentrated light sources are
often significantly brighter than the average colors within a scene. In a room lit by
a bare light bulb, the light seen reflecting from tens of square meters of ceiling,
floor, and walls originates from just a few square millimeters of light bulb filament.
Because of such ratios, light sources are often thousands, and occasionally millions,
of times brighter than the rest of the scene.

In many cases, the full dynamic range of scenes with directly visible light sources
can still be recovered using standard HDR photography techniques, in that camera
shutter speeds can usually be varied down to 1

4000 of a second or shorter, and small
apertures can be used as well. Furthermore, modern lighting design usually avoids
having extremely concentrated lights (such as bare filaments) in a scene, preferring
to use globes and diffusers to more comfortably spread the illumination over a wider
area. However, for outdoor scenes the sun is a light source that is both very bright
and very concentrated. When the sun is out, its brightness can rarely be recorded
using a typical camera even using the shortest shutter speed, the smallest aperture,
and the lowest sensor gain settings. The sun’s brightness often exceeds that of the
sky and clouds by a factor of fifty thousand, which is difficult to cover using varying
shutter speeds alone.

Stumpfel et al. [200] presented a technique for capturing light from the sky up
to and including the sun. To image the sky, the authors used a Canon EOS 1Ds
digital camera with a Sigma 8-mm fish-eye lens facing upward on the roof of an
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office building (Figure 9.13(a)). The lens glare caused by the sun was minor, which
was verified by photographing a clear sky twice and blocking the sun in one of the
images. For nearly the entire field of view, the pixel values in the sky were within a
few percent points of each other in both images.

As expected, the sun was far too bright to record even using the camera’s shortest
shutter speed of 1

8000 of a second at f/16, a relatively small aperture.3 The authors
thus placed a Kodak Wratten 3.0 neutral density (ND) filter on the back of the lens
to uniformly reduce the light incident on the sensor by a factor of one thousand.4

ND filters are often not perfectly neutral, giving images taken though them a sig-
nificant color cast. The authors calibrated the transmission of the filter by taking
HDR images of a scene with and without the filter, and divided the two images to
determine the filter’s transmission in the red, green, and blue color channels. All
images subsequently taken through the filter were scaled by the inverse of these
transmission ratios.

Having the 3.0 ND filter on the lens made it possible to image the sun at 1
8000 of

a second at f/16 without saturating the sensor (see Figure 9.13(a)), but it made the
sky and clouds require an undesirably long exposure time of 15 seconds. To solve
this problem, the authors used a laptop computer to control the camera so that
both the shutter speed and the aperture could be varied during each HDR image
sequence. Thus, the series began at f/4 with exposures of 1, 1

4 , and 1
32 second and

then switched to f/16 with exposures of 1
16 , 1

125 , 1
1000 , and 1

8000 of a second. Images
from such a sequence are seen in Figures 9.13(b) through 9.13(h). For pre-sunrise
and post-sunset images, the f/16 images were omitted and an additional exposure
of 4 seconds at f/4 was added to capture the dimmer sky of dawn and dusk.

Creating HDR images using images taken with different apertures is slightly more
complicated than usual. Because different apertures yield different amounts of lens
vignetting, each image needs to be corrected for its aperture’s flat-field response
(see Section 9.3.3) before the HDR assembly takes place. In addition, whereas the
actual exposure ratios of different camera shutter speeds typically follow the ex-
pected geometric progression ( 1

30 second is usually precisely half the exposure of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 The authors observed unacceptably pronounced star patterns around the sun at the smaller apertures of f/22 and f/32

due to diffraction of light from the blades of the iris.

4 Because the fish-eye lens has such a wide-angle view, filters are placed on the back of the lens using a small mounting

bracket rather than on the front.



reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 28

394 CHAPTER 09. IMAGE-BASED LIGHTING

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

(a) Setup (b) 1 sec., f/4

(c) 1
4 sec., f/4 (d) 1

32 sec., f/4

FIGURE 9.13 (a) A computer-controlled camera with a fish-eye lens placed on a roof to capture
HDR images of the sky. A color-corrected HDR image series (b through h) of a sunny sky taken
using varying shutter speed, aperture, and a 3.0 neutral density filter. The inset of each frame
shows a small area around the sun, with saturated pixels shown in pink. Only the least exposed
image (h) accurately records the sun’s intensity without sensor saturation.

1
15 second; 1

15 second is usually precisely half the exposure of 1
8 second), aper-

ture transmission ratios are less exact. In theory, images taken at f/4 should re-
ceive sixteen times the exposure of images taken at f/16, but generally do not.



reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 29

9.3 CAPTURING LIGHT PROBE IMAGES 395

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

(e) 1
16 sec., f/16 (f) 1

125 sec., f/16

(g) 1
1000 sec., f/16 (h) 1

8000 sec., f/16

FIGURE 9.13 (continued)

To test this, the authors took images of a constant intensity light source at both
f/4 and f/16 and compared the pixel value ratios at the center of the image, mea-
suring a factor of 16.63 rather than 16, and compensated for this ratio accord-
ingly.

When the sun was obscured by clouds or was low in the sky, the images with
the shortest exposure times were not required to cover the full dynamic range.
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The authors discovered they could adaptively shoot the HDR image sequence by
programming the laptop computer to analyze each image in the series after it was
taken. If one of the images in the series was found to have no saturated pixels, no
additional photographs were taken.

Indirectly Deriving Sun Intensity from a Diffuse Sphere Rather than using
specialized HDR photography to directly capture the sun’s intensity, we can estimate
the sun’s intensity based on the appearance of a diffuse object within the scene. In
particular, we can use a mirrored sphere to image the ground, sky, and clouds and
a diffuse sphere to indirectly measure the intensity of the sun. Such an image pair
is shown in Figure 9.14.

The mirrored sphere contains accurate pixel values for the entire sky and sur-
rounding environment, except for the region of sensor saturation near the sun.
Because of this, the clipped light probe will not accurately illuminate a synthetic
object as it would really appear in the real environment; it would be missing the
light from the sun. We can quantify the missing light from the sun region by com-
paring the real and synthetic diffuse sphere images.

To perform this comparison, we need to adjust the images to account for each
sphere’s reflectivity. For the diffuse sphere, a gray color can be preferable to white
because it is less likely to saturate the image sensor when exposed according to the
average light in the environment. The paint’s reflectivity can be measured by paint-
ing a flat surface with the same paint and photographing this sample (with a radio-
metrically calibrated camera) in the same lighting and orientation as a flat surface of
known reflectance. Specialized reflectance standards satisfying this requirement are avail-
able from optical supply companies. These reflect nearly 99% of the incident light —
almost perfectly white. More economical reflectance standards are the neutral-toned
squares of a Gretag–MacBeth ColorChecker chart (www.gretagmacbeth.com), whose re-
flectivities are indicated on the back of the chart. Let us call the reflectivity of our
standard ρstandard, the pixel color of the standard in our image Lstandard, and the pixel
color of the paint sample used for the diffuse sphere Lpaint. Then the reflectivity
ρpaint of the paint is simply:

ρpaint = ρstandard
Lpaint

Lstandard
.
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(a) Mirrored sphere (b) Diffuse sphere

(c) Pclipped (d) Dreal

FIGURE 9.14 (a) A mirrored sphere photographed as a single LDR exposure with direct sun-
light. The bright sun becomes a saturated region of pixels clipped to white. (b) A gray diffuse sphere
photographed in the same illumination, held several inches in front of the mirrored sphere. (c) The
cropped, reflectance-calibrated, and clipped mirrored sphere image Pclipped. (d) The cropped and
reflectance-calibrated image of the diffuse sphere Dreal.

For the diffuse paint used to paint the sphere in Figure 9.14(b), the reflectivity was
measured to be (0.320, 0.333, 0.346) in the red, green, and blue channels, indicat-
ing that the chosen paint is very slightly bluish. Dividing the pixel values of the dif-
fuse sphere by its reflectivity yields the appearance of the diffuse sphere as if it were
100% reflective, or perfectly white; we call this image Dreal (see Figure 9.14(d)).
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Likewise, the image of the mirrored sphere should be divided by the mirrored
sphere’s reflectivity as described in Section 9.3.1 and Figure 9.10 to produce the
image that would have been obtained from a perfectly reflective mirrored sphere.

With both sphere images calibrated, we can use IBL to light a synthetic white
sphere with the clipped lighting environment image, which we call Dclipped in Fig-
ure 9.15. As expected, this synthetic sphere appears darker than the real sphere in
the actual lighting environment Dreal. If we subtract Dclipped from Dreal, we obtain an
image of the missing reflected light from the sun region (which we call Dsun). This
operation leverages the additive property of light, described in detail in Section 9.9.

From the previous section we know that the sun is a 0.53-degree disk in the sky.
To properly add such a source to Pclipped, it should be placed in the right direction
and assigned the correct radiant intensity. The direction of the sun can usually be
estimated from the clipped light probe image as the center of the saturated region
in the image. The pixel coordinates (u, v) in this image can be converted to a di-
rection vector (Dx,Dy,Dz) using the ideal sphere-mapping formula discussed in
Section 9.4.1. If the saturated region is too large to locate the sun with sufficient
precision, it is helpful to have at least one additional photograph of the mirrored

FIGURE 9.15 The calibrated image of the real diffuse sphere Dreal, minus the image of a
synthetic diffuse sphere lit by the clipped IBL environment Dclipped, yields an image of the missing
light from the sun Dsun.
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sphere taken with a shorter exposure time, or a photograph of a black plastic sphere
in which the sun’s position can be discerned more accurately. In this example, the
sun’s direction vector was measured as (0.748, 0.199, 0.633) based on its position
in the mirrored sphere image.

To determine the sun’s radiance, we know that if the sun alone were to illu-
minate a white diffuse sphere the sphere should appear similar to Dsun. We begin
by creating a sun disk with direction (0.748, 0.199, 0.633), an angular extent of
0.53 degrees diameter, and an experimental radiance value of Lsuntest = 46,700. The
specification for such a light source in a rendering file might look as follows.

light sun directional {
direction 0.748 0.199 0.633
angle 0.5323
color 46700 46700 46700

}

The value 46,700 is chosen for convenience to be the radiant intensity of a 0.53
degrees diameter infinite light source that illuminates a diffuse white sphere such
that its brightest spot (pointing toward the source) has a radiance of 1. Lighting a
white sphere with this source produces the image Dsuntest seen in Figure 9.16.

From the equation shown in Figure 9.16, we can solve for the unknown color
α that best scales Dsuntest to match Dsun. This is easily accomplished by dividing
the average pixel values of the two images: α = avg(Dsun)/avg(Dsuntest). Then, we can
compute the correct radiant intensity of the sun as Lsun = αLsuntest. For this example,
applying this procedure to each color channel yields α = (1.166, 0.973, 0.701),
which produces Lsun = (54500, 45400, 32700). Replacing the Lsuntest value in the
directional light specification file with this new Lsun value produces a directional
light that models the missing sunlight in the clipped light probe image.

We can validate the accuracy of this procedure by lighting a diffuse sphere with
the combined illumination from the clipped probe Pclipped and the reconstructed sun.
Figures 9.17(a) and (b) show a comparison between the real diffuse sphere Dreal

and a synthetic diffuse sphere illuminated by the recovered environment. Subtract-
ing (a) from (b) (shown in Figure 9.17(c)) allows us to visually and quantitatively
verify the accuracy of the lighting reconstruction. The difference image is nearly
black, which indicates a close match. In this case, the root mean squared intensity
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FIGURE 9.16 Lighting a white sphere (Dsuntest) from the direction of the sun with an ex-
perimental radiant intensity Lsuntest sets up an equation to determine the missing light from the
sun.

FIGURE 9.17 (a) The calibrated diffuse sphere Dreal in the lighting environment. (b) A ren-
dered diffuse sphere, illuminated by the incomplete probe Pclipped and the recovered sun. (c) The
difference between the two. The nearly black image indicates that the lighting environment was
recovered accurately.
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difference between the real and simulated spheres is less than 2%, indicating a close
numeric match as well. The area of greatest error is in the lower left of the differ-
ence image, which is a dim beige color instead of black due to unintended bounced
light on the real sphere from the person’s hand holding the sphere.

At this point, the complete lighting environment is still divided into two pieces:
the clipped IBL environment and the directional sun source. To unify them, the sun
disk could be rasterized into a mirror reflection image space and then added to the
clipped IBL environment. However, as we will see in Section 9.6.1, it can be a great
benefit to the rendering process if concentrated lights such as the sun are simu-
lated as direct light sources rather than as part of the IBL environment (because of
the sampling problem). Figure 9.38(e) later in this chapter shows a rendering of
a collection of CG objects illuminated by the combination of the separate clipped
probe and the direct sun source. The appearance of the objects is realistic and con-
sistent with their environment. The rendering makes use of an additional technique
(described in Section 9.7) to have the objects cast shadows onto the scene as well.

Images with concentrated light sources such as the sun not only require addi-
tional care to acquire but also pose computational challenges for image-based light-
ing algorithms. Section 9.6 describes why these challenges occur and how they can
be solved through importance sampling techniques. Before beginning that topic,
we will describe some of the omnidirectional image-mapping formats commonly
used to store light probe images.

9.4 OMNIDIRECTIONAL IMAGE MAPPINGS

Once a light probe image is captured, it needs to be stored in an image file us-
ing an omnidirectional image mapping. This section describes four of the most
commonly used image mappings and provides formulas to determine the appropri-
ate (u, v) coordinates in the image corresponding to a unit direction in the world
D = (Dx,Dy,Dz), and vice versa. These formulas all assume a right-handed coor-
dinate system in which (0, 0, −1) is forward, (1, 0, 0) is right, and (0, 1, 0) is up.

This section also discusses some of the advantages and disadvantages of each
format. These considerations include the complexity of the mapping equations,
how much distortion the mapping introduces, and whether the mapping has special
features that facilitate computing properties of the image or using it with specific
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rendering algorithms. The mappings this section presents are the ideal mirrored sphere,
the angular map, latitude-longitude, and the cube map.

9 . 4 . 1 I D E A L M I R RO R E D S P H E R E

For the ideal mirrored sphere we use a circle within the square image domain of
u ∈ [0,1], v ∈ [0,1]. The mapping equation for world to image is as follows.

r = sin( 1
2 arccos(−Dz))

2
√

Dx
2 + Dy

2

(u, v) =
(

1

2
+ rDx ,

1

2
− rDy

)

The mapping equation for image to world is as follows.

r =
√

(2u − 1)2 + (2v − 1)2

(θ,φ) = (atan2(2u − 1,−2v + 1),2 arcsin(r))

(Dx,Dy,Dz) = (sinφ cos θ, sinφ sin θ,− cosφ)

The ideal mirrored sphere mapping (Figure 9.18(a)) is how the world looks when
reflected in a mirrored sphere, assuming an orthographic camera and a world that is
distant relative to the sphere’s diameter. In practice, real spheres exhibit a mapping
similar to this ideal one as long as the sphere is small relative to its distance to the
camera and to the objects in the environment. Of course, the reflection in a sphere
is actually a mirror image of the environment, and thus the image should be flipped
in order to be consistent with directions in the world.

Like all mappings in this section, the ideal mirrored sphere reflects all directions
of the environment. Straight forward — that is, D = (0, 0, −1) — appears in the

center of the image. Straight right, D = (1, 0, 0), appears
√

2
2 of the way from the

center to the right-hand edge of the image. Straight up appears
√

2
2 of the way

from the center to the top of the image. Straight back is the one direction that
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(a) (b)

FIGURE 9.18 (a) The ideal mirrored sphere mapping. (b) the angular map mapping. The
mappings appear similar, but devote different amounts of image area to the front versus the back
half of the environment.

does not cleanly map to a particular image coordinate, and corresponds to the outer
circumference of the circle’s edge.

From these coordinates, we see that the front half of the environment is con-
tained within a disk that is

√
2

2 of the diameter of the full image. This makes the
area taken up by the front half of the environment precisely equal to the area taken
up by the back half of the environment. This property generalizes in that any two
regions of equal solid angle in the scene will map to the same amount of area in
the image. One use of this equal-area property is to calculate the average illumina-
tion color in a light probe (the average pixel value within the image circle is the
average value in the environment). If the image has a black background behind



reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 38

404 CHAPTER 09. IMAGE-BASED LIGHTING

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

the circular image, the average value in the scene is 4
π

of the average of the entire
square.

A significant disadvantage with the mirrored sphere mapping is that the back half
of the environment becomes significantly stretched in one direction and squeezed
in the other. This problem increases in significance toward the outer edge of the
circle, becoming extreme at the edge. This can lead to the same problem we saw
with mirrored sphere light probe images, in that the regions around the edge are
poorly sampled in the radial direction. Because of this, the mirrored sphere format
is not a preferred format for storing omnidirectional images, and the angular map
format is frequently used instead.

9 . 4 . 2 A N G U L A R M A P

For the angular map we also use a circle within the square image domain of u ∈
[0,1], v ∈ [0,1]. The mapping equation for world to image is as follows.

r = arccos(−Dz)

2π

√
Dx

2 + Dy
2

(u, v) =
(

1

2
− rDy,

1

2
+ rDx

)

The equation for image to world is as follows.

(θ,φ) =
(

atan2(−2v + 1,2u − 1),φ = π
√

(2u − 1)2 + (2v − 1)2
)

(Dx,Dy,Dz) = (sinφ cos θ, sinφ sin θ,− cosφ)

The angular map format (Figure 9.18(b)) is similar in appearance to the mir-
rored sphere mapping, but it samples the directions in a manner that avoids un-
dersampling the regions around the edges. In this mapping, the distance of a point
from the center of the image is directly proportional to the angle between straight
ahead and its direction in the world. In this way, straight forward appears at the
center of the image, and straight right and straight up appear halfway to the edge of
the image. Regions that map near the edge of the sphere are sampled with at least
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as many pixels per degree in any direction as the center of the image. Because of
this property, many light probe images (including those in the Light Probe Image
Gallery [160]) are available in this format. Unlike the mirrored sphere mapping,
the angular map is not equal area, and does not translate solid angle proportion-
ately into image area. Areas near the edge become stretched in the direction tangent
to the circumference but are neither stretched nor squeezed in the perpendicular
direction, making them overrepresented in the mapping.

Because the mirrored sphere and angular map mappings appear similar, some-
times an angular map image is loaded into a rendering program as if it were a
mirrored sphere image, and vice versa. The result is that the environment becomes
distorted, and straight vertical lines appear curved. One way to tell which mapping
such an image is in is to convert it to the latitude-longitude format (in which ver-
tical lines should be straight) or the cube map format, in which all straight lines
should be straight except at face boundaries.

9 . 4 . 3 L AT I T U D E - L O N G I T U D E

For the latitude-longitude mapping we use a rectangular image domain of u ∈
[0,2], v ∈ [0,1]. The mapping equation for world to image is as follows.

(u, v) =
(

1 + 1

π
atan 2(Dx,−Dz),

1

π
arccosDy

)

The equation for image to world is as follows.

(θ,φ) = (π(u − 1),πv)

(Dx,Dy,Dz) = (sinφ sin θ, cosφ,− sinφ cos θ)

The latitude-longitude mapping (Figure 9.19(a)) maps a direction’s azimuth to the
horizontal coordinate and its elevation to the vertical coordinate of the image. This
is known to cartographers as an equirectangular mapping. Unlike the previous two map-
pings, it flattens the sphere into a rectangular area. The top edge of the image cor-
responds to straight up, and the bottom edge of the image is straight down. The
format most naturally has a 2:1 aspect ratio (360 degrees by 180 degrees), as this in-
troduces the least distortion for regions near the horizon. The areas toward straight



reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 40

406 CHAPTER 09. IMAGE-BASED LIGHTING

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

(a
)

(b
)

F
IG

U
R

E
9

.1
9

(a
)

Th
el

at
itu

de
-l

on
gi

tu
de

m
ap

pi
ng

.(
b)

Th
ec

ub
em

ap
m

ap
pi

ng
.



reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 41

9.4 OMNIDIRECTIONAL IMAGE MAPPINGS 407

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

up and straight down are sampled equivalently with the regions near the horizon in
the vertical direction, and are progressively more oversampled toward the top and
bottom edges.

The latitude-longitude mapping is convenient because it is rectangular and has
no seams (other than at the poles), and because the mapping formulas are simple
and intuitive. Although straight lines generally become curved in this format, ver-
tical lines in the scene map to straight vertical lines in the mapping. Another useful
property is that in this format the lighting environment can be rotated around the y

axis simply by translating the image horizontally. The mapping is not equal area (the
percentage any particular area is overrepresented is inversely proportional to the co-
sine of the latitude φ). Thus, to find the average pixel value in a light probe image in
this format one can multiply the image by the vertical cosine falloff function cosφ

and compute the average value of these modified pixels.

9 . 4 . 4 C U B E M A P

For the cube map we use a rectangular image domain of u ∈ [0,3], v ∈ [0,4]. The
cube map formulas require branching to determine which face of the cube corre-
sponds to each direction vector or image coordinate. Thus, they are presented as
pseudocode. The code for world to image is as follows.

if ((Dz<0) && (Dz<=-abs(Dx))
&& (Dz<=-abs(Dy))) // forward

u = 1.5 - 0.5 * Dx / Dz;
v = 1.5 + 0.5 * Dy / Dz;

else if ((Dz>=0) && (Dz>=abs(Dx))
&& (Dz>=abs(Dy))) // backward

u = 1.5 + 0.5 * Dx / Dz;
v = 3.5 + 0.5 * Dy / Dz;

else if ((Dy<=0) && (Dy<=-abs(Dx))
&& (Dy<=-abs(Dz)) // down

u = 1.5 - 0.5 * Dx / Dy;
v = 2.5 - 0.5 * Dz / Dy;

else if ((Dy>=0) && (Dy>=abs(Dx))
&& (Dy>=abs(Dz))) // up
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u = 1.5 + 0.5 * Dx / Dy;
v = 0.5 - 0.5 * Dz / Dy;

else if ((Dx<=0) && (Dx<=-abs(Dy))
&& (Dx<=-abs(Dz))) // left

u = 0.5 + 0.5 * Dz / Dx;
v = 1.5 + 0.5 * Dy / Dx;

else if ((Dx>=0) && (Dx>=abs(Dy))
&& (Dx>=abs(Dz))) // right

u = 2.5 + 0.5 * Dz / Dx;
v = 1.5 - 0.5 * Dy / Dx;

The code for image to world is as follows.

if u>=1 and u<2 and v<1 // up
Vx = (u - 1.5) * 2
Vy = 1.0
Vz = (v - 0.5) * -2

else if u<1 and v>=1 and v<2 // left
Vx = -1.0
Vy = (v - 1.5) * -2
Vz = (u - 0.5) * -2

else if u>=1 and u<2 and v>=1 and v<2 // forward
Vx = (u - 1.5) * 2
Vy = (v - 1.5) * -2
Vz = -1.0

else if u>=2 and v>=1 and v<2 // right
Vx = 1.0
Vy = (v - 1.5) * -2
Vz = (u - 2.5) * 2

else if u>=1 and u<2 and v>=2 and v<3 // down
Vx = (u - 1.5) * 2
Vy = -1.0
Vz = (v - 2.5) * 2

else if u>=1 and u<2 and v>=3 // backward
Vx = (u - 1.5) * 2
Vy = (v - 3.5) * 2
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Vz = 1.0

normalize = 1 / sqrt(Vx * Vx + Vy * Vy + Vz * Vz)

Dx = normalize * Vx
Dy = normalize * Vy
Dz = normalize * Vz

In the cube map format (Figure 9.19(b)) the scene is represented as six square
perspective views, each with a 90-degree field of view, which is equivalent to pro-
jecting the environment onto a cube and then unfolding it. The six squares are most
naturally unfolded into a horizontal or vertical cross shape but can also be packed
into a 3 × 2 or 6 × 1 rectangle to conserve image space. The mapping is not equal
area (areas in the corners of the cube faces take up significantly more image area per
solid angle than the areas in the center of each face). However, unlike the angular
map and latitude-longitude mappings, this relative stretching is bounded: angular
areas that map to the cube’s corners are overrepresented by a factor of up to 3

√
3 in

area relative to regions in the center.
This mapping requires six different formulas to convert between world directions

and image coordinates, depending on which face of the cube the pixel falls within.
Although the equations include branching, they can be more efficient to evaluate
than the other mappings (which involve transcendental functions such as asin and
atan2). This image format is sometimes the most convenient for editing the light
probe image, because straight lines in the environment remain straight in the image
(although there are generally directional discontinuities at face boundaries). For
showing a light probe image in the background of a real-time rendering application,
the image mapping is straightforward to texture map onto a surrounding cubical
surface.

9.5 HOW A GLOBAL ILLUMINATION RENDERER
COMPUTES IBL IMAGES

Returning to the rendering process, it is instructive to look at how a global illumina-
tion algorithm computes IBL images such as those seen in Figure 9.4. In general, the
algorithm needs to estimate how much light arrives from the lighting environment
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and the rest of the scene at each surface point, which in large part is a matter of vis-
ibility: light from the visible parts of the environment must be summed, and light
that is blocked by other parts of the scene must instead be replaced by an estimate
of the light reflecting from those surfaces. This measure of incident illumination,
multiplied by the reflectance of the surface itself, becomes the color rendered at a
particular pixel in the image.

The RNL animation was rendered with RADIANCE [205], which like most mod-
ern global illumination systems is based on ray tracing. The image is rendered one
pixel at a time, and for each pixel the renderer needs to determine the RGB color
L to display for that pixel. In our case, L is an HDR RGB pixel value, with its three
components proportional to the amount of red, green, and blue radiance arriving
toward the camera in the direction corresponding to the pixel. For each pixel, a ray
R is traced from the camera C (Figure 9.20(a)) until it hits a surface in the scene
at a 3D point P . L is then computed as a function of the reflectance properties of
the surface at P and the incident light arriving at P . This section lists the different
types of surfaces R can hit and how the rendering system then computes their ap-
pearance as lit by the scene. We will see that the most costly part of the process is
computing how light reflects from diffuse surfaces. Later in this chapter, we will see
how understanding this rendering process can motivate techniques for increasing
the rendering efficiency.

Case 1: R Hits the IBL Environment If the ray strikes the emissive surface sur-
rounding the scene at point P (Figure 9.20(a)), the pixel color L in the rendering
is computed as the color from the light probe image that was texture mapped onto
the surface at P . In RNL, this could be a green color from the leaves of the trees, a
bright blue color from the sky, or a brown color from the ground below, depending
on which pixel and where the camera is looking. The HDR range of the surrounding
environment is transferred to the resulting HDR renderings.

In this case, the renderer does not take into consideration how the surface at
point P is being illuminated, because the surface is specified to be emissive rather
than reflective. This is not exactly how light behaves in the real world, in that most
objects placed in a scene have at least a minute effect on the light arriving at all
other surfaces in the scene. In RNL, however, the only place where this might be
noticeable is on the ground close to the pedestal, which might receive less light
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(a) (b)

(c) (d)

FIGURE 9.20 Probe mapping: A mirrored sphere reflects the entire surrounding environment
except for the light blue area obscured by the ball. The ideal mirrored sphere mapping (see Sec-
tion 9.4.1) maps a light probe image onto an IBL environment surface. Case 1: A ray R sent
from the virtual camera C hits the IBL environment surface at P . The HDR value L on the
surface is copied to the image pixel. Case 2: R hits a specular surface of a CG object. The reflected
ray R′ is traced, in this case striking the IBL environment at P ′ with an HDR value of L′. L′
is multiplied by the object’s specular color to determine the final pixel value L. (For a translucent
surface, a refracted ray R′′ is also traced.) Case 3: R hits a diffuse surface at P . A multitude of
rays R′

i are traced into the scene to determine the irradiance E at P as a weighted average of the
incident light values L′

i from points P ′
i . E is multiplied by the diffuse object color to determine

the final pixel value L.
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from the environment due to shadowing from the pedestal. Because this area was
not seen in the RNL animation, the effect did not need to be simulated.

Case 2: R Hits a Mirror-like Specular Surface A mirror-like specular surface
having no roughness shows a clear image of the scene around it. In RNL, the glass,
plastic, and metallic spheres have mirror-like specular components. When the ray
R hits such a surface at a point P (Figure 9.20(b)), the renderer reflects the ray
about P ’s surface normal N and follows this reflected ray R′ into the scene until it
strikes a new surface at point P ′. It then recursively computes the color L′ of the
light coming from P ′ along R′ toward P in precisely the same way it computes
the light coming from a point P along R toward the camera. For example, if R′
strikes the emissive surface surrounding the scene at P ′, the renderer retrieves the
appropriate pixel color L′ from the surrounding light probe image (an instance of
Case 1). The recursion depth for computing bounces of light is usually limited to a
user-defined number, such as six bounces for specular reflections and two bounces
for diffuse reflections.

The incident light L′ along the reflected ray is then used to produce the specular
component of the resulting light L reflecting from the surface. For metals, this
light is multiplied by the metallic color of the surface. For example, a gold material
might have a metallic color of (0.8, 0.6, 0.3). Because these color components are
less than 1, the metallic reflection will reveal some of the detail in the reflected HDR
environment not seen directly.

For glass-like materials, the mirror-like specular component is fainter, typically
in the range of 4 to 8% (though at grazing angles it becomes greater due to Fresnel
reflection), depending on the index of refraction of the material. Thus, the light L′
is multiplied by a small value to create the specular component of the color L in the
image. In the case of RNL, this makes the bright sky detail particularly evident in the
reflections seen in the top of the large glass ball (as in Figure 9.4(a)). For glass-like
materials, a second refracted ray R′′ is also traced through the translucent surface,
and the light L′′ arriving along this ray is added to the total light L reflected toward
the camera.

For plastic materials, there is both a specular component and a diffuse compo-
nent to the reflection. For such materials the specular component is computed in
the same way as the specular component of glass-like materials and is added to the
diffuse component, which is computed as described in material following.
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Case 3: R Hits a Diffuse Surface Diffuse surfaces reflect light equally in all di-
rections, and light arriving from every direction in the upper hemisphere of the
surface contributes to the reflected light. Because of this, computing the light re-
flecting from diffuse surfaces can be computationally expensive. The total amount
of light arriving at a surface point P is called its irradiance, denoted by E, which is
a weighted integral of all colors L′

i arriving along all rays R′
i (Figure 9.20(c)). The

contribution of each ray R′
i is weighted by the cosine of the angle θi between it and

the surface normal N , because light arriving from oblique angles provides less illu-
mination per unit area. If we denote L′(P,ω) to be the function representing the
incident light arriving at P from the angular direction ω in P ’s upper hemisphere
�, E can be written as

E(P,N) =
∫

�

L′(P,ω) cos θ dω.

Unfortunately, E cannot be computed analytically, because it is dependent on not
just the point’s view of the environment but also on how this light is occluded and
reflected by all other surfaces in the scene visible to the point. To estimate E, the
renderer takes a weighted average of the light colors L′

i arriving from a multitude of
rays R′

i sent out from P to sample the incident illumination. When a ray R′
i strikes

the surface surrounding the scene, it adds the corresponding pixel color L′
i from the

lighting environment to the sum, weighted by the cosine of the angle between N

and R′
i . When a ray R′

i strikes another part of the scene P ′
i , the renderer recursively

computes the color of light L′
i reflected from P ′

i toward P and adds this to the sum
as well, again weighted by cos θ . Finally, E is estimated as this sum divided by the
total number of rays sent out, as follows.

E(P,N) ≈ 1

k

k−1∑
i=0

L′
i cos θi

The accuracy of the estimate of E increases with the number of rays k sent out from
P . Once E is computed, the final light L drawn for the pixel is the surface’s diffuse
color (called its albedo, often denoted by ρ) multiplied by the irradiance E.

Computing the integral of the incident illumination on an object’s surface per-
forms a blurring process on the HDR light probe image that is similar to the blurring
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we have seen in Section 9.2.5. HDR pixels in the image are averaged together ac-
cording to a filter, in this case a blur over the upper hemisphere. Just as before, this
process makes the effect of HDR pixel values in an environment visible in the much
lower dynamic range values reflecting from diffuse surfaces. Clipping the lighting
environment to a display’s white point before computing the lighting integral would
significantly change the values of the computed irradiance.

Because many rays must be traced, the process of sampling the light arriving
from the rest of the scene at a point can be computationally intensive. When rays
are sent out at random, the number of rays needed to estimate the incident illumina-
tion to a given expected accuracy is proportional to the variance of the illumination
within the scene. To conserve computation, some renderers (such as RADIANCE)
can compute E for a subset of the points P in the scene, and for other points in-
terpolate the irradiance from nearby samples — a process known as irradiance caching.
Furthermore, irradiance samples computed for one frame of an animation can be
reused to render subsequent frames, as long as the scene remains static. Both of
these features were used to reduce the rendering time for the RNL animation by a
factor of several thousand.

9 . 5 . 2 S A M P L I N G O T H E R S U R F A C E R E F L E C TA N C E
T Y P E S

In RNL, all of the surfaces had either a mirror-like specular component or com-
pletely diffuse reflectance, or a combination of the two. Other common mate-
rial types include rough specular reflections and more general bidirectional re-
flectance distribution functions (BRDFs) [190] that exhibit behaviors such as
retroreflection and anisotropy. For such surfaces, the incident illumination needs
to be sampled according to these more general distributions. For example, in the
case of rough specular surfaces the rendering system needs to send out a multi-
tude of rays in the general direction of the reflected angle R’ with a distribution
whose spread varies with the specular roughness parameter. Several BRDF mod-
els (such as Lafortune et al. [178] and Ashikhmin and Shirley [153]) have as-
sociated sampling algorithms that generate reflected ray directions in a distrib-
ution that matches the relative contribution of incident light directions for any
particular viewing direction. Having such importance sampling functions is very help-
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ful for computing renderings efficiently, as the alternative is to send out signifi-
cantly more rays with a uniform distribution and weight the incident light arriv-
ing along each ray according to the BRDF. When the number of rays is limited,
this can lead to noisy renderings in comparison to sampling in a distribution that
matches the BRDF. Figure 9.21 shows an example of this difference from Lawrence
et al. [181].

In general, using more samples produces higher-quality renderings with more
accurate lighting and less visible noise. We have just seen that for different types of
materials renderings are created most efficiently when samples are chosen accord-
ing to a distribution that matches the relative importance of each ray to the final
appearance of each pixel. Not surprisingly, the importance of different ray direc-

(a) (b)

FIGURE 9.21 IBL renderings of a pot from [181] computed with 75 rays per pixel to sample
the incident illumination for a vase with a rough specular BRDF. (a) Noisy results obtained by
using uniform sampling and modulating by the BRDF. (b) A result with less noise obtained by
sampling with a distribution based on a factored representation of the BRDF.
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tions depends on not only the BRDF of the material but on the distribution of the
incident illumination in the environment. To render images as efficiently as possible,
it becomes important to account for the distribution of the incident illumination
in the sampling process, particularly for IBL environments with bright concentrated
light sources. The next section presents this problem and describes solutions for
sampling incident illumination efficiently.

9.6 SAMPLING INCIDENT ILLUMINATION
EFFICIENTLY

We have just seen that the speed at which images can be computed using IBL as
described in the previous section depends on the number of rays that need to be
traced. The bulk of these rays are traced to estimate the illumination falling upon
diffuse surfaces through sampling. The light falling on a surface (i.e., its irradiance
E) is the average value of the radiance arriving along all light rays striking the
surface, weighted by the cosine of the angle each ray makes with the surface normal.
Because averaging together the light from every possible ray is impractical, global
illumination algorithms estimate the average color using just a finite sampling of
rays. This works very well when the lighting environment is generally uniform in
color. In this case the average radiance from any small set of rays will be close to
the average from all of the rays because no particular ray strays far from the average
value to begin with. However, when lighting environments have some directions
that are much brighter than the average color, it is possible for the average of just a
sampling of the rays to differ greatly from the true average.

When ray directions are chosen at random, the number of rays needed to ac-
curately sample the illumination is proportional to the variance in the light probe
image. Lighting environments that have low variance (such as cloudy skies) can be
sampled accurately with just tens of rays per irradiance calculation. Environments
with greater variance, such as scenes with concentrated light sources, can require
hundreds or thousands of rays per irradiance calculation when rays are sent out at
random. The Eucalyptus Grove light probe, which featured bright backlit clouds in
the direction of the setting sun, required over 1,000 rays per irradiance calculation,
making rendering RNL computationally expensive. In this section, we describe this
sampling problem in detail and present several sampling techniques that mitigate
the difficulties.
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FIGURE 9.22 A laser-scanned 3D model of the Parthenon illuminated by a uniformly white
lighting environment, giving the appearance of a dense cloudy day.

Figure 9.22 shows a virtual model of the Parthenon rendered with IBL using
a synthetic lighting environment of a completely white sky.5 This environment,
being all the same color, has zero variance, and a high-quality rendering could be
computed using the Arnold global illumination rendering system [167] using a
relatively modest 81 rays to sample the incident light at each pixel. The only source
of illumination variance at each surface point is due to visibility: some directions
see out to the sky, whereas others see indirect light from the other surfaces in the
scene. Because the color of the indirect light from these other surfaces is also low
in variance and not radically different from the light arriving from the sky, the

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 The virtual Parthenon model was created by laser scanning the monument and using an inverse global illumination

process leveraging image-based lighting to solve for its surface colors and reflectance properties from photographs, as

described in Debevec et al. [163].
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FIGURE 9.23 A light probe image of a sunny sky, taken with a fish-eye lens. Pixels on the
sun disk (much smaller than the saturated region seen here) are on the order of 100,000 times
brighter than the average color of the rest of the sky.

total variance remains modest and the illumination is accurately sampled using a
relatively small number of rays.

In contrast to the perfectly even sky, Figure 9.23 shows a clear sky with a directly
visible sun, acquired using the technique in Stumpfel et al. [200]. The half-degree
disk of the sun contains over half the sky’s illumination but takes up only one hun-
dred thousandth of the sky’s area, giving the sunny sky a very high variance. If we
use such a high-variance environment to illuminate the Parthenon model, we ob-
tain the noisy rendering seen in Figure 9.24. For most of the pixels, none of the
81 rays sent out to sample the illumination hit the small disk of the sun, and thus
they appear only to be lit by the light from the sky and clouds. For the pixels where
one of the rays did hit the sun, the sun’s contribution is greatly overestimated, be-
cause the sun is counted as 1

81 of the lighting environment rather than one hundred
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FIGURE 9.24 The virtual Parthenon rendered using the sunny sky light probe in Figure 9.23
with 81 lighting samples per pixel. The appearance is speckled because 81 samples distributed
randomly throughout the sky are not enough to accurately sample the small disk of the sun.

thousandth. These pixels are far brighter than what can be shown in an LDR image,
and their intensity is better revealed by blurring the image somewhat (as in Fig-
ure 9.25). On average, this image shows the correct lighting, but the appearance is
strange because the light from the sun has been squeezed into a random scattering
of overly bright pixels.

The noisy Parthenon rendering shows what is known as the sampling problem. For
lighting environments with concentrated sources, a very large number of rays needs
to be sent in order to avoid noisy renderings. For the sunny sky, hundreds of thou-
sands of rays would need to be sent to reliably sample the small sun and the large
sky, which is computationally impractical. Fortunately, the number of rays can be
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FIGURE 9.25 A Gaussian blurred version of Figure 9.24, showing more clearly the amount of
reflected sun energy contained in just a few of the image pixels.

reduced to a manageable number using several techniques. In each technique, the
key idea is to give the rendering algorithm a priori information about how to sample
the illumination environment efficiently. These techniques (described in material
following) include light source identification, light source constellations, and importance sampling.

9 . 6 . 1 I D E N T I F Y I N G L I G H T S O U R C E S

The ray sampling machinery implemented in traditional global illumination algo-
rithms typically only samples the indirect lighting within a scene. Concentrated
light sources are assumed to be explicitly modeled and taken into account in the
direct lighting calculation in which rays are sent to these lights explicitly. In image-
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based lighting, both direct and indirect sources are effectively treated as indirect
illumination, which strains the effectiveness of this sampling machinery.

Many IBL environments can be partitioned into two types of areas: small con-
centrated light sources and large areas of indirect illumination. These types of en-
vironments fare poorly with simplistic sampling algorithms, in that much of the
illumination is concentrated in small regions that are easily missed by randomly
sampled rays. One method of avoiding this problem is to identify these small con-
centrated light regions and convert them into traditional area light sources. These
new area light sources should have the same shape, direction, color, and intensity
as seen in the original image, and the corresponding bright regions in the image-
based lighting environment must be removed from consideration in the sampled
lighting computation. This yields the type of scene that traditional global illumina-
tion algorithms are designed to sample effectively.

For the sunny sky light probe, this process is straightforward. The direction of the
sun can be determined as the centroid of the brightest pixels in the image, converted
to a world direction vector using the angular mapping formula in Section 9.4.2. As
mentioned earlier in this chapter, the size and shape of the sun is known to be a
disk whose diameter subtends 0.53 degrees of the sky. The color and intensity of
the sun can be obtained from the light probe image as the average RGB pixel value
of the region covered by the sun disk. In a typical rendering system a specification
for such a light source might look as follows.

light sun directional {
direction -0.711743 -0.580805 -0.395078
angle 0.532300
color 10960000 10280000 866000

}

Figure 9.26 shows a global illumination rendering of the Parthenon illuminated just
by the sun light source. For each pixel, the renderer explicitly sends at least one ray
toward the disk of the sun to sample the sun’s light because the sun is a direct light
source known a priori to the renderer. Thus, the rendering has no noise problems,
as in Figure 9.24. Although the rest of the sky is black, the renderer still sends ad-
ditional randomly fired rays from each surface to estimate the indirect illumination
arriving from other surfaces in the scene. These effects are most significant in the
case of shadowed surfaces that are visible to sunlit surfaces, such as the left sides of



reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 56

422 CHAPTER 09. IMAGE-BASED LIGHTING

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

FIGURE 9.26 The Parthenon illuminated only by the sun, simulated as a direct light source.

the front columns. Because the blue skylight scattered by the atmosphere is not be-
ing simulated, the rendering shows how the Parthenon might look if it were located
on the moon and illuminated by a somewhat yellowish sun.

The rest of the sky’s illumination can be simulated using an image-based light-
ing process, but we first need to make sure that the light from the sun is no longer
considered to be part of the image-based lighting environment. In some rendering
systems, it is sufficient to place the new direct light source in front of the IBL en-
vironment surface and it will occlude the image-based version of the source from
being hit by indirect sample rays. In others, the corresponding image region should
be set to black in order to prevent it from being part of the image-based illumi-
nation. If we remove the sun from the sky and use the remainder of the image as
an IBL environment, we obtain the rendering seen in Figure 9.27. This rendering,
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FIGURE 9.27 The Parthenon illuminated only by the sky and clouds, with 81 samples per
pixel.

although it lacks sunlight, is still a realistic one. It shows the scene approximately as
if a cloud had passed in front of the sun.

In practice, it is sometimes necessary to delete a somewhat larger area around
the light source from the IBL environment, because some light sources have sig-
nificantly bright regions immediately near them. These regions on their own can
contribute to the appearance of noise in renderings. Sometimes, these regions are
due to glare effects from imperfect camera optics. In the case of the sun, forward
scattering effects in the atmosphere creates a bright circumsolar region around the
sun. Because of both of these effects, to create the sky used for Figure 9.27 a region
covering the circumsolar area was removed from the light probe image, and this
additional light energy was added to the sun intensity used to render Figure 9.26.
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FIGURE 9.28 An efficient noise-free rendering of the Parthenon made using IBL for the sky and
clouds and a direct light source for the sun, with 81 samples per pixel.

As a result, the edges of shadows in the sun rendering are slightly sharper than they
should be, but the effect is a very subtle one.

Finally, we can light the scene with the sun and sky by simultaneously including
the IBL environment for the sky and clouds and the direct light source for the sun
in the same rendering, as seen in Figure 9.28. (We could also just add the images
from Figures 9.26 and 9.27 together.) This final rendering shows the combined
illumination from the sun and the rest of the sky, computed with a relatively modest
81 sample rays per pixel.

Identifying light sources can also be performed for more complex lighting en-
vironments. The SIGGRAPH 99 Electronic Theater animation Fiat Lux used an IBL
environment created from HDR images acquired in St. Peter’s Basilica. It was ren-
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dered with the RADIANCE lighting simulation system. The images were assembled
into HDR panoramas and projected onto the walls of a basic 3D model of the Basil-
ica’s interior, seen in Figure 9.29(b). The illumination within the Basilica consisted
of indirect light from the walls and ceiling, as well as concentrated illumination
from the windows and the incandescent lights in the vaulting. To create renderings
efficiently, each of the concentrated area lights’ sources was identified by drawing
a polygon around the source in the panoramic image, as seen in Figure 9.29(a).
A simple program computed the average HDR pixel value of the region covered
by each light source, and created an area light source set to this value for its radi-
ance. Just like the panoramic image, the vertices of the identified light sources were
projected onto the walls of the virtual Basilica model, placing the lights at their
proper 3D locations within the scene. Thus, the image-based illumination changed
throughout the virtual scene, as the directional light depended on each object’s 3D
location relative to the light sources.

Two other details of the procedure used in Fiat Lux are worth mentioning. First,
the light sources were placed a small distance in front of the walls of the Basilica,
so that rays fired out from the surfaces would have no chance of hitting the bright
regions behind the lights without having to set these regions to black. Second,
the lights were specified to be “illum” light sources, a special RADIANCE light
source type that is invisible to rays coming directly from the camera or from mirror-
like reflections. As a result, the lights and windows appeared with their proper
image-based detail when viewed directly and when seen in the reflections of the
synthetic objects, even though they had been covered up by direct light sources.
Figure 9.30(a) shows a frame from Fiat Lux in which a variety of virtual objects
have been placed within the Basilica using IBL with identified light sources. Because
“illum” sources were used, the motion-blurred reflections in Figure 9.30(b) reflect
the original image-based light sources.

Identifying light sources dramatically reduces the number of rays needed to cre-
ate noise-free renderings of a scene, and it maintains the realism and accuracy of
image-based lighting. Having the concentrated sources converted to individual CG
lights is also useful for art direction, as these light sources can be readily repo-
sitioned and changed in their color and brightness. These light sources can also
be used in a rendering system that does not support global illumination, yield-
ing at least an approximate version of the IBL environment. For some applications,
however, it is desirable to have a fully automatic method of processing an IBL en-
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(a)

(b)

(c)

FIGURE 9.29 (a) Identified light sources from (c) corresponding to the windows and the in-
candescent lights in the vaulting. The HDR image and the light sources were projected onto a 3D
model of the Basilica interior to form a 3D lighting environment. (b) Basic 3D geometry of the
Basilica interior used as the IBL environment surface. (c) An image-based lighting environment
acquired inside St. Peter’s Basilica.
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(a)

(b)

FIGURE 9.30 (a) A frame from the Fiat Lux animation, showing synthetic objects inserted
into the Basilica, illuminated by the HDR lighting environment using identified light sources.
(b) Another frame from the animation showing HDR motion blur effects in the reflections of the
spinning objects. Shadows and reflections of the objects in the floor were created using the techniques
described in Section 9.7.
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vironment into a description that can be rendered efficiently. The remainder of this
section presents some of these automatic sampling techniques.

9 . 6 . 2 C O N V E RT I N G A L I G H T P RO B E I N T O A
C O N S T E L L AT I O N O F L I G H T S O U R C E S

As we saw previously, it is possible to reduce the variance in an image-based light-
ing environment by converting concentrated spots of illumination into direct light
sources. We can carry this idea further by turning entire lighting environments into
constellations of light sources. These approximations can eliminate noise from ren-
derings but can introduce aliasing in shadows and highlights when not enough light
sources are used. When the light source directions are chosen with care, accurate
illumination can be created using a manageable number of light sources, and these
lights can be used in either traditional or global illumination rendering systems.

In general, this approach involves dividing a light probe image into a number of
regions, and then creating a light source corresponding to the direction, size, color,
and intensity of the total light coming from each region. Each region can be rep-
resented either by a point light source, or by an area light source corresponding to
the size and/or shape of the region. Figure 9.31 shows perhaps the case of approxi-
mating an IBL environment with a constellation of point light sources. A light probe
taken within St. Peter’s Basilica was converted to a cube map (Figure 9.31(a)), and
each face of the cube map was resized to become a square of just 10 by 10 pix-
els, seen in Figure 9.31(a). Then, a point light source was placed in the direction
corresponding to each pixel on each face of the cube, and set to the color and in-
tensity of the corresponding pixel, yielding 600 light sources. These light sources
produced a low-resolution point-sampled version of the image-based lighting en-
vironment. The technique has the attractive quality that there is no sampling noise
in the renderings, as rays are always traced to the same light locations. However, the
technique can introduce aliasing, because the finite number of lights may become
visible as stair-stepped shadows and fragmented specular reflections.

Figure 9.31(b) shows the results of rendering a small scene using this constella-
tion of light sources. For both the diffuse figure and the glossy red ball the rendering
is free of noise and artifacts, though the shadows and highlights from the windows
and lights are not in precisely the right locations due to the finite resolution of the
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(a)

(b)

FIGURE 9.31 (a) A light probe image taken inside St. Peter’s Basilica in cube map format. (b)
An approximation of the St. Peter’s lighting using a 10 × 10 array of point lights for each cube
face. The Buddha model is courtesy of the Stanford computer graphics laboratory.
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light source constellation. For the shiny sphere, simulating the illumination from
the set of point lights makes little sense because there is a vanishingly small prob-
ability that any particular reflected ray would precisely hit one of the point lights.
Instead, it makes sense to use ray tracing to reflect these rays directly into the image-
based lighting environment, as described in case 2 in Section 9.5. In the rendering,
the mirrored sphere is shown reflecting an illustrative image composed of spots for
each point light source.

The quality of approximating an IBL environment with a finite number of lights
can be significantly increased if the light sources are chosen in a manner that con-
forms to the distribution of the illumination within the light probe image. One
strategy for this is to have each light source represent approximately the same quan-
tity of light in the image. Taking inspiration from Heckbert’s median-cut color
quantization algorithm [173], we can partition a light probe image in the rectan-
gular latitude-longitude format into 2n regions of similar light energy as follows.

1 Add the entire light probe image to the region list as a single region.
2 For each region, subdivide along the longest dimension such that its light

energy is divided evenly.
3 If the number of iterations is less than n, return to step 2.

For efficiency, calculating the total energy within regions of the image can be accel-
erated using summed area tables [159]. Once the regions are selected, a light source
can be placed in the center of each region, or alternately at each region’s energy cen-
troid, to better approximate the spatial distribution of the light within the region.
Figure 9.32 shows the Grace Cathedral lighting environment partitioned into 256
light sources, and Figure 9.33 shows a small scene rendered with 16, 64, and 256
light sources chosen in this manner. Applying this technique to our simple diffuse
scene, 64 lights produce a close approximation to a well-sampled and computa-
tionally intensive global illumination solution, and the 256-light approximation is
nearly indistinguishable.

A few implementation details should be mentioned. First, computing the total
light energy is most naturally performed on monochrome pixel values rather than
RGB colors. Such an image can be formed by adding together the color channels of
the light probe image, optionally weighting them in relation to the human eye’s sen-
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(a)

(b)

FIGURE 9.32 (a) The Grace Cathedral light probe image subdivided into 256 regions of equal
light energy using the median cut algorithm. (b) The 256 light sources chosen as the energy
centroids of each region. All of the lights are approximately equal in intensity. A rendering made
using these lights appears in Figure 9.33(c).
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(a) 16 lights (b) 64 lights

(c) 256 lights (d) 4,096 ray samples

FIGURE 9.33 Noise-free renderings (a through c) in the Grace Cathedral lighting environment
as approximated by 16, 64, and 256 light sources chosen with the median cut algorithm. An
almost noise-free Monte Carlo IBL rendering (d) needing 4,096 randomly chosen rays per pixel.

sitivity to each color channel.6 Partitioning decisions are made on this monochrome
image, and light source colors are computed using the corresponding regions in the

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Following ITU-R BT.709, the formula used to convert RGB color to monochrome luminance is Y = 0.2125R + 0.7154G +

0.0721B.
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original color image. Second, the latitude-longitude format overrepresents the area
of regions near the poles. To compensate for this, the pixels of the probe image
should first be scaled by cosφ. Additionally, determining the longest dimension of
a region should also take this stretching into account. This can be approximated by
multiplying a region’s width by cosφ, where φ is taken to be the angle of inclina-
tion of the middle of the region.

Several other light source selection procedures have been proposed for approxi-
mating light probe images as constellations of light sources. In each, choosing these
point light source positions is also done with a clustering algorithm.

The LightGen plug-in [158] for HDR Shop [202] takes a light probe image
in latitude-longitude format and outputs a user-specified number of point light
sources in a variety of 3D modeling program formats. LightGen chooses its light
source positions using a K-means clustering process [184]. In this process, K light
source positions are initially chosen at random. Then the pixels in the light probe
image are partitioned into sets according to which light source they are closest
to. For each set of pixels, the mass centroid of the set is determined such that a
pixel’s mass is proportional to its total intensity. Then, each of the K light sources is
moved to the mass centroid of its set. The pixels are repartitioned according to the
new light source directions and the process is repeated until convergence. Finally,
each light source is assigned the total energy of all pixels within its set. Figure 9.34
shows results for K = 40 and K = 100 light sources for a kitchen light probe
image.

LightGen tends to cluster the light sources around bright regions, but these light
sources generally contain more energy than the light sources placed in dimmer
regions. As a result, dimmer regions receive more samples than they do in the me-
dian cut algorithm, but more lights may be necessary to approximate the structure
of shadows. For example, if the kitchen window is approximated as six bright point
light sources it can be possible to observe multiple distinct shadows from the six
sources rather than the expected soft shadow from an area light source.

Kollig and Keller [177] propose several improvements to LightGen’s clustering
technique. They begin the K-means procedure using a single randomly placed light
source and then add in one more random light at a time, each time iterating the
K-means clustering procedure until convergence. This process requires additional
computation but performs better at placing the light sources within concentrated
areas of illumination. They also discuss several procedures of reducing aliasing once
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(a)

(b)

(c)

FIGURE 9.34 (a) An IBL environment of a kitchen. (b) An approximation of the kitchen
environment made by LightGen using 40 point lights. (c) An approximation using 100 point
lights.

the light source positions are chosen. One of them is to use the light source regions
as a structure for stratified sampling. In this process, the lighting environment is sampled
with K rays, with one ray chosen to fire at random into each light source region. To
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(a) (b)

(c) (d)

FIGURE 9.35 (a) Lights chosen for an outdoor light probe image by the Kollig and Keller
sampling algorithm. (b) An IBL rendering created using lights from the Kollig and Keller algorithm.
(c) Lights chosen for the Galileo’s Tomb light probe image by the Ostromoukhov et al. sampling
algorithm. (d) The Penrose tiling pattern used by Ostromoukhov et al. for choosing light source
positions.

avoid problems with the remaining variance within each region, they propose using
the average RGB color of each region as the color of any ray fired into the region.
Lights chosen by this algorithm and a rendering using such lights are shown in
Figures 9.35(a) and 9.35(b).



reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 70

436 CHAPTER 09. IMAGE-BASED LIGHTING

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

Ostromoukhov et al. [191] use a light source sampling pattern based on the
geometric Penrose tiling to quickly generate a hierarchical sampling pattern with an
appropriately spaced distribution. The technique is optimized for efficient sampling
and was able to achieve sampling speeds of just a few milliseconds to generate
several hundred light samples representing a lighting environment. A set of lights
chosen using this pattern is shown in Figure 9.35(c), and the Penrose tiling pattern
used is shown in Figure 9.35(d).

9 . 6 . 3 I M P O RTA N C E S A M P L I N G

As an alternative to converting a light probe image into light sources, one can con-
struct a randomized sampling technique such that the rays are sent in a distribution
that matches the distribution of energy in the light probe image. In the case of the
sunny sky in Figure 9.23, such an algorithm would send rays toward the disk of the
sun over half the time, since more than half of the light comes from the sun, rather
than in proportion to the sun’s tiny area within the image. This form of sampling
can be performed using a mathematical technique known as importance sampling.

Importance sampling was introduced for the purpose of efficiently evaluating
integrals using Monte Carlo techniques [185] and has since been used in a vari-
ety of ways to increase the efficiency of global illumination rendering (e.g., Veach
and Guibas [204]). Because a computer’s random number generator produces uni-
formly distributed samples, a process is needed to transform uniformly distributed
numbers to follow the probability distribution function (PDF) corresponding to the distri-
bution of light within the image. The process is most easily described in the context
of a 1D function f (x) : x ∈ [a, b], as seen in Figure 9.36(a). Based on a desired

PDF, one computes the cumulative distribution function g(x) = ∫ x

a
f (x)/

∫ b

a
f (x),

as seen in Figure 9.36(b). We note that g(x) increases monotonically (and thus has
an inverse) because f (x) is nonnegative, and that g(x) ranges between 0 and 1. Us-
ing g(x), we can choose samples xi in a manner corresponding to the distribution
of energy in f (x) by choosing values yi uniformly distributed in [0,1] and letting
xi = g−1(yi). This process is shown graphically for four samples in Figure 9.36(b).

To see why this process works, note that each bright light source near a point
x in the PDF produces a quick vertical jump in the CDF graph in the area of g(x).
Seen from the side, the jump produces a flat span whose length is proportional to
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(a) (b)

FIGURE 9.36 Importance sampling. (a) A plot of the brightness of a 256 × 1 pixel region
(seen below) of the St. Peter’s light probe image that intersects several bright windows, forming
a probability distribution function (PDF). The image region is displayed below the graph using
an HDR glare effect. (b) A graph of the cumulative distribution function (CDF) of the region
from left to right for importance sampling. Four randomly chosen samples yi (indicated by small
horizontal arrows) are followed right until they intersect the graph (indicated by the diamonds),
and are then followed down to their corresponding image pixel samples xi .

the amount of the scene’s energy contained by the light. This flat span becomes a
likely landing spot for randomly chosen samples yi , with a likelihood proportional
to the light’s energy within the scene. When a sample yi falls within the span, it
produces a sample of the light source near x. In Figure 9.36(b) we see that three of
the four random samples fell on spans corresponding to areas within bright light
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(a) (b)

FIGURE 9.37 (a) A noisy IBL rendering in the St. Peter’s lighting environment Figure 9.31(a)
using 64 randomly distributed samples per pixel. (b) A much smoother rendering using 64 samples
per pixel chosen using the importance sampling technique described in Pharr et al. [192].

sources. The sample furthest to the top right did not land on a steep slope, and thus
produced a sample in one of the dimmer areas of the image.

Extending this technique from 1D functions to 2D images is straightforward, as
one can concatenate each row of an m × n light probe image into a single mn × 1
pixel vector, suggested by Agarwal et al. [152]. Pharr and Humphreys [192] pro-
pose an implementation of importance sampling for light probe images within their
Physically-Based Rendering package [193], in which importance sampling is first
used to compute which column of the image to sample (the energy of each column
x is summed to produce f (x)) and a sample is taken from the chosen image column
using 1D importance sampling (as described previously). Figure 9.37 compares the
results of using this sampling algorithm to using randomly distributed rays. As de-
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sired, the rendering using importance sampling yields dramatically less noise than
random sampling for the same number of samples.

To produce renderings that converge to the correct solution, light values chosen
using importance sampling must be weighted in a manner that is inversely propor-
tional to the degree of preference given to them. For example, sampling the sunny
sky of Figure 9.23 with importance sampling would on average send over half of
the rays toward the sun, as the sun contains over half the light in the image. If
we weighted the radiance arriving from all sampled rays equally the surface point
would be illuminated as if the sun were the size of half the entire sky.

A deficiency of these light probe sampling techniques is that they sample the
lighting environment without regard to which parts of the environment are visible
to a given surface point. Agarwal et al. [152] present a structured importance sampling
approach for IBL that combines importance sampling with the conversion to light
sources in order to better anticipate variable visibility to the environment. They
first threshhold the image into regions of similar intensity, and use the Hochbaum–
Shmoys clustering algorithm to subdivide each region a number of times propor-
tional to both its size and its total energy. In this way, large dim regions do not
become undersampled, which improves the rendering quality of shadowed areas.
Likewise, small bright regions are represented with fewer samples relative to their
intensity, in that their small spatial extent allows them to be accurately modeled
with a relatively small number of samples. Cohen [157] constructs a piecewise-
constant importance function for a light probe image, and introduces a visibility cache
that exploits coherence in which parts of the lighting environment are visible to
neighboring pixels. With this cache, significantly fewer rays are traced in directions
that are occluded by the environment.

9.7 SIMULATING SHADOWS AND SCENE-OBJECT
INTERREFLECTION

So far, the IBL techniques presented simulate how the light from an environment
illuminates CG objects, but not how the objects in turn affect the appearance of
the environment. The most notable effect to be simulated is the shadow an object
casts beneath itself. However, shadows are just part of the lighting interaction that
should be simulated. Real objects also reflect light back onto the scene around them.
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(a) (b)

(c) (d)

FIGURE 9.38 Adding synthetic objects that cast shadows. (a) A background plate taken near
the location of the light probe image in Figure 9.14. It shows the radiance L of pixels in the local
scene. (b) A light probe image taken within the scene. (c) A diffuse surface is added to the scene at
the position of the ground and is rendered as lit by the surrounding IBL environment. The resulting
pixel values on the surface produce an estimate of the irradiance E at each pixel. (d) Dividing a
by c yields the lighting-independent texture map for the local scene. (e) A CG statue and four CG
spheres are added on top of the local scene and illuminated by the IBL environment. The CG objects
cast shadows and interreflect light with the real scene.

For example, a red ball on the floor will make the floor around it somewhat red-
der. Effects such as this are often noticed only subconsciously but can contribute
significantly to the realism of rendered images.
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(e)

FIGURE 9.38 (continued)

The examples we have seen so far from Rendering with Natural Light and the Parthenon
did not need to simulate shadows back into the scene. The Parthenon model was
a complete environment with its own surrounding ground. In RNL, the pedestal
received shadows from the objects but the pedestal itself was part of the computer-
generated scene. The example we show in this section involves adding several CG
objects into the photograph of a museum plaza (seen in Figure 9.38(a)) such that
the objects realistically shadow and reflect light with the ground below them (see
Figure 9.38(c)). In this example, the light probe image that corresponds to this
background plate is the sunny lighting environment shown in Figure 9.14.

Usually, the noticeable effect a new object has on a scene is limited to a local
area near the object. We call this area the local scene, which in the case of the scene
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in Figure 9.38(a) is the ground in front of the museum. Our strategy for casting
shadows on the local scene is to convert the local scene into a CG representation
of its geometry and reflectance that can participate in the lighting simulation along
with the CG objects. We can then use standard IBL machinery to light the objects
and the local scene together by the IBL environment. The local scene model does not
need to have the precise geometry and reflectance of what it represents in the real
world, but it does need to satisfy two properties. First, it should have approximately
the same geometry that the real scene it represents, in that the shadows reveal some
of the scene structure. Second, it should have reflectance properties (e.g., texture
maps) that cause it to look just like the real local scene when illuminated on its own
by the IBL environment.

Modeling the geometry of the local scene can be done by surveying the scene or
using photogrammetric modeling techniques (e.g., Debevec et al. [165]) or soft-
ware (e.g., ImageModeler by Realviz, www.realviz.com). Because the geometry needed
is often very simple, it can also be modeled by eye in a 3D modeling package. Sim-
ilar techniques should also be used to recover the camera position, rotation, and
focal length used to take the background photograph.

Obtaining the appropriate texture map for the local scene is extremely simple. We
first assign the local scene a diffuse white color. We render an image of the white
local scene as lit by the IBL lighting environment, as in Figure 9.38(c). We then
divide the image of the real local scene (Figure 9.38(a)) in the background plate by
the rendering to produce the reflectance image for the local scene (Figure 9.38(d)).
Finally, we texture map the local scene with this reflectance image using camera
projection (supported in most rendering systems) to project the image onto the
local scene geometry. If we create a new IBL rendering of the local scene using
this texture map, it will look just as it did in the original background plate. The
difference is that it now participates in the lighting calculation, and thus can receive
shadows and interreflect light with synthetic objects added to the scene.

Figure 9.38(e) shows the result of adding a 3D model of a sculpture and four
spheres on top of the local scene geometry before computing the IBL rendering.
The objects cast shadows on the ground as they reflect and refract the light of the
scene. One can also notice bounced beige light near the ground of the beige sphere.
The color and direction of the shadows are consistent with the real shadow cast on
the ground by a post to the right of the camera’s view.
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The reason the reflectance-solving process works derives from the fact that the
pixel color of a diffuse surface is obtained by multiplying its surface color by the
color and intensity of the light arriving at the surface. This calculation was described
in detail in case 3 of Section 9.5. More technically stated, the surface’s radiance L

is its reflectance ρ times the irradiance E at the surface. Inverting this equation,
we have ρ = L/E. The background plate image shows the surface radiance L of
each pixel of the local scene. The IBL rendering of the diffuse white version of the
local scene yields an estimate of the irradiance E at every point on the local scene.
Thus, dividing L by the estimate of E yields an image ρ of the surface reflectance
of the local scene. By construction, assuming the local scene is convex these are the
reflectance properties that make the local scene look like the background plate when
lit by the IBL environment.

This process can be modified slightly for improved results when the local scene
is nonconvex or non-Lambertian. For a nonconvex local scene such as a chair or a
staircase, light will reflect between the local scene’s surfaces. That means that our
estimate of the irradiance E arriving at the local scene’s surfaces should account for
light from the IBL environment as well as interreflected light from the rest of the
local scene. The process described earlier does this, but the indirect light is com-
puted as if the local scene were completely white, which will usually overestimate
the amount of indirect light received from the other surfaces. As a result, the local
scene’s reflectance will be underestimated, and the local scene texture’s map will be
too dark in concave areas.

The way to avoid this problem is to assume more accurate reflectance properties
for the local scene before computing the irradiance image. Typical surfaces in the
world reflect approximately 25% of the incident illumination, and thus assuming
an initial surface reflectance of ρ0 = 0.25 is a more reasonable initial guess. After
rendering the local scene, we should compute the irradiance estimate E0 as E0 =
L0/ρ0, where L0 is the rendering generated by lighting the local scene by the IBL
environment. This is another simple application of the L = ρE formula. Then the
texture map values for the local scene can be computed as before, as ρ1 = L/E0.

If the local scene exhibits particularly significant self-occlusion or spatially vary-
ing coloration, the reflectance estimates can be further refined by using the com-
puted reflectance properties ρ1 as a new initial estimate for the same procedure.
We illuminate the new local scene by the IBL environment to obtain L1, estimate a
new map of the irradiance as E1 = L1/ρ1, and finally form a new estimate for the
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local scene’s per-pixel reflectance ρ2. Typically, the process converges quickly to the
solution after one or two iterations. In fact, this basic process was used to derive the
surface reflectance properties of the Parthenon model seen in Figure 9.28, in which
the “local scene” was the entire monument [163].

In some cases, we can simplify the surface reflectance estimation process. Often,
the local scene is a flat ground plane and the IBL environment surface is distant or
infinite. In this case, the irradiance E is the same across the entire surface, and can
be computed as the upward-pointing direction of a diffuse convolution of the light
probe image. This eliminates the need to render a complete irradiance image such
as shown in Figure 9.38(c), and the local scene reflectance is simply its appearance
in the background plate divided by the RGB value E.

9 . 7 . 1 D I F F E R E N T I A L R E N D E R I N G

The need to use camera projection to map the local scene texture onto its geometry
can be avoided using the differential rendering technique described in [161]. In
differential rendering, the local scene is assigned (often uniform) diffuse and spec-
ular surface reflectance properties similar to the reflectance of the local scene. These
properties are chosen by hand or computed using the reflectance estimation process
described previously. Then, two renderings are created: one of the local scene and
the objects together (Lobj), and one of the local scene without the objects (Lnoobj).
For Lobj, an alpha channel image α is created that is 1 for the object pixels and
0 for the non-object pixels, preferably with antialiasing and transparency encoded
as gray levels. If Lnoobj and Lobj are the same, there is no shadowing. Where Lobj is
darker, there are shadows, and where Lobj is brighter there are reflections or indi-
rectly bounced light. To apply these photometric effects to the background plate L,
we offset its pixel values by the difference between Lobj and Lnoobj. Specifically, the
final rendering is computed as

Lfinal = αLobj + (1 − α)(L + Lobj − Lnoobj).

In this formula, the α mask allows Lfinal to copy the appearance of the objects
directly from Lobj, and the local scene is rendered using differential rendering.

As an alternative method, we can apply the ratio of Lobj and Lnoobj to the back-
ground plate, changing the last term of the formula to L × Lobj/Lnoobj. If the re-
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flectance properties of the local scene and the IBL environment are modeled accu-
rately, the background plate L and the local scene lit by the IBL environment Lnoobj

would be the same. In this case, the local scene’s appearance in Lnoobj is copied to
Lfinal regardless of whether the difference or the ratio formula is used. When there
are inaccuracies in either the lighting or the reflectance, either formula may yield a
convincing approximation to the correct result. The difference formula may provide
better results for specular reflections and the ratio formula may provide better results
for shadows. In either case, only differences between Lobj and Lnoobj will modify the
background plate, and where the objects do not affect the local scene it will look
precisely as it did in the background plate.

The benefit of this technique is that the local scene does not need to be pro-
jectively texture mapped with its appearance in the background plate image. The
drawback is that mirror- and glass-like CG objects will not reflect images of the
original local scene. Instead, they will reflect images of the modeled local scene.

9 . 7 . 2 R E N D E R I N G I N T O A N O N D I F F U S E L O C A L
S C E N E

If the local scene is somewhat shiny, we would like the new objects to also appear
in reflections in the scene. This was the case for Fiat Lux (Figure 9.30), where the
marble floor of St. Peter’s Basilica is notably specular. The problem is compounded
by the fact that a shiny local scene may already have visible specularities from bright
parts of the lighting environment, and these reflections should disappear when vir-
tual objects are placed between the light sources and the observed locations of their
specular reflections. Thus, the synthetic local scene needs to model the specular as
well as the diffuse reflection characteristics of the real local scene. Unfortunately,
estimating spatially varying diffuse and specular reflection components of a surface,
even under known illumination, is usually prohibitively challenging for current re-
flectometry algorithms.

The easiest procedure to follow is to first manually remove visible specular re-
flections in the local scene using an image-editing program. In Fiat Lux, the notable
specular reflections in the floor were from the windows, and in some cases from
the lights in the vaulting. Using the edited background plate, we then solve for the
local scene reflectance assuming that it is diffuse (as described previously). For the
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final rendering, we add a specular component to the local scene reflectance whose
intensity and roughness are selected by hand to match the appearance of the spec-
ularities seen in the local scene on the background plate. The IBL rendering will
then show the new CG objects reflecting in the local scene according to the spec-
ified specular behavior, and light sources in the IBL environment will also reflect
in the local scene when their light is not blocked by the CG objects. This process
also provides opportunities for art direction. In Fiat Lux, for example, the floor of
St. Peter’s was chosen to have a more polished specular reflection than it really had,
to increase the visual interest of its appearance in the animation.

Sometimes a local scene’s specular reflectance dominates its diffuse reflectance,
as would be seen for a steel or black marble floor. In these cases, it can be difficult
to remove the specular reflection through image editing. In such a case, the best so-
lution may be to model the reflectance of the local scene by eye, choosing specular
intensity and roughness parameters that cause reflections of the IBL environment
to match the local scene’s original appearance reasonably well. If the scene is avail-
able for photography under controlled lighting, the local scene can be shaded from
specular reflections and illuminated from the side to observe its diffuse component.
If the reflectance of the local scene is especially complex and spatially varying, such
as an ancient stone and metal inlaid mosaic, one could use a technique such as that
described in McAllister [183] or Gardner et al. [169] to derive its surface reflectance
parameters by analyzing a set of images taken from many incident illumination di-
rections.

9.8 USEFUL IBL APPROXIMATIONS

Many of today’s rendering programs include specific support for image-based light-
ing (often referred to as HDRI), making IBL a straightforward process to use for
many computer graphics applications. However, not every production pipeline is
designed to support global illumination, and real-time applications require faster
rendering times than ray-traced illumination solutions typically allow. Fortunately,
there are several approximate IBL techniques that allow particularly fast rendering
times and that can be implemented within more traditional rendering pipelines.
The sections that follow describe two of them: environment mapping and ambient oc-
clusion. The discussion includes the advantages and disadvantages of these two ap-
proaches.



reinhard v.2005/03/22 Prn:15/06/2005; 15:09 F:reinhard09.tex; VTEX/JOL p. 81

9.8 USEFUL IBL APPROXIMATIONS 447

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

9 . 8 . 1 E N V I RO N M E N T M A P P I N G

Environment mapping [154,186,207,171] is a forerunner of image-based light-
ing in which an omnidirectional LDR image of an environment is directly texture
mapped onto an object surface to produce the appearance of it reflecting the en-
vironment. The omnidirectional environment map or reflection map image can also be
pre-convolved by a blurring filter to simulate the reflections from rough specular or
diffuse surfaces. The environment map is mapped onto the object according to each
point’s surface normal, which makes the rendering process extremely fast once the
appropriate reflection map images have been computed. The disadvantage is that
the technique does not take into account how light is shadowed and interreflects
between object surfaces, which can be an impediment to realism. For objects that
are relatively shiny and convex, the errors introduced by the approximation can be
insignificant. For objects with more complex geometry and reflectance properties,
however, the results can be less realistic.

Environment mapping is most successful and most often used for simulating the
specular reflections of an object. In this case, for each surface point the ray from the
camera R is reflected about the surface normal N to determine the reflected vector
R′, computed as follows.

R′ = R − 2(R · N)N

Then, the point on the object is drawn with the pixel color of the environment
image corresponding to the direction of R′. Figure 9.39(a) shows this environment
mapping process applied to the scene shown in Figure 9.1.

The environment-mapped rendering gives the appearance that the objects are
reflecting the environment. However, the appearance is somewhat strange because
we do not see reflections of the sphere in the table (the speheres appear to float
above it). We can compare this rendering to the corresponding IBL rendering of
mirror-like objects in Figure 9.39(b), which exhibits appropriate interreflections.
If the scene were a single convex object, however, the two renderings would be the
same.

It is interesting to note that this form of environment mapping does not require
that the environment map be higher in its dynamic range than the final display.
Because every pixel in the rendering comes directly from the environment map,
clipping the pixel values of the environment map image would be unnoticeable on
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(a) (b)

FIGURE 9.39 (a) A shiny version of the test scene rendered using environment mapping.
(b) A shiny version of the scene rendered with ray-tracing-based IBL, producing interreflections.

a similarly clipped display, unless the rendering were to exhibit significant motion
blur or image defocus.

Environment mapping can also be used to simulate the reflection of an environ-
ment by surfaces with non-mirror reflectance properties, by pre-convolving the image
of the environment by various convolution filters [186,171,155,174]. This takes
advantage of an effect noted by Ramamoorthi and Hanrahan [195] that a detailed
environment reflected in a rough specular surface looks similar to a blurred en-
vironment reflected in a mirror-like surface. Often, a specular Phong cosine lobe
[194] is used as the convolution filter.

To simulate Lambertian diffuse reflection with environment mapping, a hemi-
spherical cosine lobe is used as the convolution filter, yielding an irradiance environment
map. For diffuse reflection, one indexes into the irradiance environment map us-
ing the object point’s surface normal direction N rather than the reflected vector
R′. Convolving the image can be computationally expensive, but because irradi-
ance images lack sharp detail a close approximation can be made by convolving a
low-resolution version of as few as 32 × 16 pixels in latitude-longitude format.
Cabral et al. [155] suggested that such a convolution could be performed efficiently
on a spherical harmonic (SH) decomposition of the incident illumination, and Ra-
mamoorthi and Hanrahan [195] noted that computing the SH reconstruction of an
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(a) (b)

(c) (d)

FIGURE 9.40 (a) HDR Grace Cathedral light probe image, in the mirrored sphere format.
(b) The light probe in a shown with lower exposure, revealing details in the bright regions.
(c) A specular convolution of a. (d) A diffuse convolution of a, showing how this lighting en-
vironment would illuminate a diffuse sphere. (e) An LDR environment map version of a with
clipped pixel values. (f) The image in e with lower exposure, showing that the highlights have been
clipped. (g) A specular convolution of e, showing inaccurately reduced highlight size and intensity
relative to c. (h) A diffuse convolution of e, yielding an inaccurately dark and desaturated rendering
compared to d.
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(e) (f)

(g) (h)

FIGURE 9.40 (continued)

environment using the first nine terms (orders 0, 1, and 2) of the SH decompo-
sition approximates the diffuse convolution of any lighting environment to within
99% accuracy.7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 This technique for computing an irradiance environment map can yield regions with negative pixel values when applied

to an environment with concentrated light sources due to the Gibbs ringing phenomenon.
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(a) (b)

(c) (d)

FIGURE 9.41 (a) A scene environment mapped with the diffuse convolution of the Grace Cathe-
dral environment. (b) An ambient occlusion map obtained using IBL to light the scene with a
homogeneous white lighting environment. (c) The ambient occlusion map multiplied by a. (d)
The scene illuminated using standard IBL from the light probe image. For this scene, the principal
difference from c is in the shadow regions, which have more directional detail in d.

Figure 9.41(a) shows a scene rendered using diffuse environment mapping. Be-
cause environment mapping does not simulate self-shadowing, the image is not as
realistic a rendering of the scene as the IBL solution shown in Figure 9.41(d). How-
ever, if the scene were a single convex object the two renderings would again be the
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same. In general, environment mapping produces more convincing results for spec-
ular reflection than for diffuse reflection. As a result, for objects with both specular
and diffuse reflectance components it is common for environment mapping to be
used for the specular reflection and traditional lighting for the diffuse component.
The technique of reflection occlusion [179] can further increase the realism of specular
environment mapping by tracing reflected rays from each surface point to deter-
mine if the environment’s reflection should be omitted due to self-occlusion.

When the incident illumination is blurred by a convolution filter, it becomes
necessary that the environment map cover the full dynamic range of the incident
illumination to obtain accurate results. Figure 9.40 shows a comparison of using
an LDR environment map versus an HDR light probe image for rendering a diffuse
sphere using convolution and environment mapping.

9 . 8 . 2 A M B I E N T O C C L U S I O N

Ambient occlusion [179] can be used to approximate image-based lighting using
a single-bounce irradiance calculation under the assumption that the IBL lighting
environment is relatively even. The technique leverages the key IBL step of firing rays
out from object surfaces to estimate the amount of light arriving from the visible
parts of the environment, but uses diffuse environment mapping to determine the
coloration of the light at the surface point. The result is an approximate but efficient
IBL process that can perform well with artistic guidance and that avoids noise from
the light sampling process.

The first step in ambient occlusion is to use an IBL-like process to render a
neutral diffuse version of the scene as illuminated by a homogeneously white il-
lumination environment. In this step, the surfaces of the scene are set to a neu-
tral diffuse reflectance so that the rendered image produces pixel values that are
proportional to a surface point’s irradiance. This step can be performed using
the Monte Carlo ray-tracing process (described in Section 9.5) or by convert-
ing the white lighting environment into a constellation of light sources (Sec-
tion 9.6.2). In the latter case, the rendering can be formed by adding together
scan-line renderings of the scene lit from each lighting direction, with the shad-
ows being calculated by a shadow buffer algorithm. Usually, no additional light
bounces are simulated when computing this rendering. This estimate of the irradi-
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ance from the environment at each point is called the ambient occlusion map, seen in
Figure 9.41(b).

The next step is to multiply the ambient occlusion map by an image of the scene
environment mapped with the diffuse convolution of the lighting environment, as
in Figure 9.41(a). The product, seen in Figure 9.41(c), applies the self-shadowing
characteristics of the ambient occlusion map to the diffuse lighting characteristics
of the environment-mapped scene, yielding a rendering that is considerably more
realistic. If the scene has different surface colors, this rendering can be multiplied by
an image of the diffuse color of each point in the scene, which approximates hav-
ing differently colored surfaces during the original rendering. If needed, specular
reflections can be added using either ray tracing or specular environment map-
ping.

Ambient occlusion does not precisely reproduce how a scene would appear as
illuminated by the light probe using standard IBL. We can see, for example, dif-
ferences in comparing Figures 9.41(c) and 9.41(d). Most notably, the shadows in
the ambient occlusion rendering are much softer than they appear in the standard
IBL rendering. The reason is that the ambient occlusion rendering is computed as
if from a completely diffuse lighting environment, whereas a standard IBL render-
ing computes which specific parts of the lighting environment become occluded
for each part of the shadowed area. The ambient occlusion result can be improved
to some extent using bent normals [179], where the diffuse convolution of the light
probe image is mapped onto the object surfaces according to the average direction
of unoccluded light, rather than the true surface normal. However, because the sur-
face colors are still sampled from a diffuse convolution of the light probe image, the
ambient occlusion rendering will lack the shading detail obtainable from sampling
the light probe image directly.

Ambient occlusion most accurately approximates the correct lighting solution
when the lighting environment is relatively diffuse. In this case, the homogeneous
environment used to compute the occlusion is a close approximation to the envi-
ronment desired to light the scene. Ambient occlusion is not designed to simulate
light from environments that include concentrated light sources, as the directional
detail of the environment is lost in the diffuse convolution process. For IBL environ-
ments that do have concentrated light sources, an effective way of handling them
is to simulate them as direct light sources (as described in Section 9.6.1), delete
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them from the IBL environment, and use a diffuse convolution of the modified IBL
environment to multiply the ambient occlusion map.

Although computing ambient occlusion maps requires sending out a multitude
of rays to the lighting environment, the number of rays that need to be sent is
minimized because the environment has minimal variance, which alleviates the
sampling problem. Also, the ambient occlusion map is solely a function of the
object geometry and is independent of the lighting environment. Because of this,
the technique can be used to render an object with different lighting environments
while performing the ambient occlusion calculation map only once. This makes
real-time implementations very fast, especially for rotating lighting environments
for which performing additional diffuse convolutions is also unnecessary. In addi-
tion, the technique allows for relighting effects to be performed inside a standard
compositing system. For example, the convolved light probe image can be manually
edited and a relit version of the scene can be created quickly using the preexisting
normals and ambient occlusion map without rerendering.

9.9 IMAGE-BASED LIGHTING FOR REAL OBJECTS AND
PEOPLE

The IBL techniques described so far are useful for lighting synthetic objects and
scenes. It is easy to imagine uses for a process that could illuminate real scenes, ob-
jects, and people with IBL environments. To do this, one could attempt to build
a virtual model of the desired subject’s geometry and reflectance and then illu-
minate the model using the IBL techniques already presented. However, creating
photoreal models of the geometry and reflectance of objects (and particularly peo-
ple) is a difficult process, and a more direct route would be desirable. In fact,
there is a straightforward process for lighting real subjects with IBL that requires
only a set of images of the subject under a variety of directional lighting condi-
tions.

9 . 9 . 1 A T E C H N I Q U E F O R L I G H T I N G R E A L S U B J E C T S

The technique is based on the fact that light is additive, which can be described simply
as follows. Suppose we have two images of a subject, one lit from the left and one
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lit from the right. We can create an image of the subject lit with both lights at once
simply by adding the two images together, as demonstrated by [172]. If the image
pixel values are proportional to the light in the scene, this process yields exactly
the right answer, with all of the correct shading, highlights, and shadows the scene
would exhibit under both light sources. Furthermore, the color channels of the two
images can be independently scaled before they are added, allowing one to virtually
light the subject with a bright orange light to the right and a dim blue light to the
left, for example.

As we have seen in Section 9.6.2, an IBL lighting environment can be simulated
as a constellation of light sources surrounding the subject. If one could quickly light
a person from a dense sampling of directions distributed across the entire sphere of
incident illumination, it should be possible to recombine tinted and scaled versions
of these images to show how the person would look in any lighting environment.
The Light Stage device described by [162] (Figure 9.42) is designed to acquire
precisely such a data set. The device’s 250-watt halogen spotlight is mounted on
a two-axis rotation mechanism such that the light can spiral from the top of the
sphere to the bottom in approximately one minute. During this time, a set of digital
video cameras can record the subject’s appearance as illuminated by hundreds of
lighting directions distributed throughout the sphere. A subsampled light stage data
set of a person’s face is seen in Figure 9.43(a).

Figure 9.43(c) shows the Grace Cathedral lighting environment remapped to be
the same resolution and in the same longitude-latitude space as the light stage data
set. For each image of the face in the data set, the remapped environment indicates
the color and intensity of the light from the environment in the corresponding
direction. Thus, we can multiply the red, green, and blue color channels of each
light stage image by the amount of red, green, and blue light in the correspond-
ing direction in the lighting environment to obtain a modulated image data set, as
in Figure 9.43(d). Adding all of these images together then produces an image of
the subject as illuminated by the complete lighting environment, as seen in Fig-
ure 9.44(a). Results obtained for three more lighting environments are shown in
Figures 9.44(b) through 9.44(d).
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(a) (b)

FIGURE 9.42 (a) The Light Stage 1 device for lighting a person’s face from the full sphere of
incident illumination directions. (b) A one-minute exposure taken during a data set acquisition.
Images recorded from the right video camera are shown in Figure 9.43.

9 . 9 . 2 R E L I G H T I N G F RO M C O M P R E S S E D I M A G E DATA
S E T S

Computing the weighted sum of the light stage images is a simple computation,
but it requires accessing a large amount of data to create each rendering. This
process can be accelerated by performing the computation on compressed versions
of the original images. In particular, if the images are compressed using an or-
thonormal transform such as the discrete cosine transform (DCT), the linear com-
bination of the images can be computed directly on the basis coefficients of the
compressed images [197]. The downloadable Facial Reflectance Field Demo [203]
(www.debevec.org/FaceDemo/) uses DCT-compressed versions of light stage data sets to
allow a user to interactively relight a face using either light probe images or user-
controlled light sources in real time.
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(a)

(b) (c)

(d)

FIGURE 9.43 (a) Light stage data of a face illuminated from the full sphere of lighting di-
rections. The image shows 96 images sampled from the 2,000-image data set. (b) The Grace
Cathedral light probe image. (c) The Grace probe resampled into the same longitude-latitude space
as the light stage data set. (d) Face images scaled according to the color and intensity of the
corresponding directions of illumination in the Grace light probe. Figure 9.44(a) shows the face
illuminated by the Grace probe created by summing these scaled images.
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FIGURE 9.44 Renderings of the light stage data set from Figure 9.43 as illuminated by four
image-based lighting environments: (a) Grace cathedral, (b) Eucalyptus grove, (c) Uffizi gallery,
and (d) St. Peter’s Basilica.

A light stage data set can be parameterized by the four dimensions of image co-
ordinates (u, v) and lighting directions (θ,φ). Choosing a particular pixel (u, v) on
the subject, we can create a small image (called the pixel’s reflectance function) from the
color the pixel reflects toward the camera for all incident lighting directions (θ,φ)

(Figure 9.45). In the Facial Reflectance Field Demo, the 4D light stage data sets are
actually DCT compressed in the lighting dimensions rather than the spatial dimen-
sions, exploiting coherence in the reflectance functions rather than in the images
themselves. When the DCT coefficients of the reflectance functions are quantized
(as in JPEG compression), up to 90% of the data maps to zero and can be skipped
in the relighting calculations, enabling real-time rendering. The process of relight-
ing a single pixel of a light stage data set based on its reflectance function is shown
in Figure 9.45.

This image-based relighting process can also be applied in the domain of
computer-generated objects. One simply needs to render the object under an ar-
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FIGURE 9.45 Relighting a reflectance function can be performed on the original pixel values
(top row) or on DCT coefficients of the illumination data.

ray of different lighting conditions to produce a virtual light stage data set of the
object. This can be useful in that the basis images can be rendered using high-
quality offline lighting simulations but then recombined in real time through the
relighting process, maintaining the quality of the offline renderings. In the context
of CG objects, the content of a reflectance function for a surface point is its precom-
puted radiance transfer. Sloan et al. [196], Ramamoorthi and Hanrahan [195], and Ng
et al. [189] have noted that the basis lighting conditions need not be rendered with
point source illumination. Specifically, Sloan et al. [196] and Ramamoorthi and
Hanrahan [195] use the Spherical Harmonic (SH) basis, whereas Ng et al. [189]
use a wavelet basis. These techniques demonstrate varying the viewpoint of the ob-
ject by mapping its radiance transfer characteristics onto a 3D geometric model of
the object. Whereas these earlier techniques have been optimized for diffuse sur-
face reflectance in low-frequency lighting environments, Liu et al. [182] use both
a wavelet representation and clustered principal components analysis of PRT func-
tions to render view-dependent reflections from glossy objects in high-frequency
lighting environments, producing sharp shadows from light sources interactively.
Sample renderings made using these techniques are shown in Figure 9.46. Using
the GPU to perform image-based relighting on CG objects with techniques such as
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(a) (b)

(c) (d)

FIGURE 9.46 Interactive IBL renderings of 3D objects using basis decompositions of the lighting
environment and surface reflectance functions. (a) Max Planck model rendered in the RNL envi-
ronment using precomputed radiance transfer [196] based on spherical harmonics. (b) Armadillo
rendered in the Uffizi Gallery using a spherical harmonic reflection map [195]. (c) Teapot rendered
into Grace Cathedral using a 2D Haar transform [189] of the lighting and reflectance, achieving
detailed shadows. (d) Teapot rendered into St. Peter’s Basilica using precomputed radiance transfer
represented by Haar wavelets and compressed with clustered principal component analysis [182] to
produce sharp shadow detail, as seen on the teapot lid.
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these promises to become the standard method for using IBL in video games and
other interactive rendering applications.

9.10 CONCLUSIONS

In this chapter we have seen how HDR images can be used as sources of illumina-
tion for both computer-generated and real objects and scenes through image-based
lighting. Acquiring real-world lighting for IBL involves taking omnidirectional HDR
images through one of several techniques, yielding a data set of the color and in-
tensity of light arriving from every direction in the environment. This image of the
incident illumination is mapped onto a surface surrounding the object, and a light-
ing simulation algorithm is used to compute how the object would appear as if lit
by the captured illumination. With the appropriate optimizations, such images can
be computed efficiently using either global illumination or traditional rendering
techniques, and recent techniques have allowed IBL to happen in real time. Real ob-
jects can be illuminated by new environments by capturing how they appear under
many individual lighting conditions and then recombining them according to the
light in an IBL environment.

The key benefit of IBL is that it provides a missing link between light in the real
world and light in the virtual world. With IBL, a ray of light can be captured by
an HDR camera, reflected from a virtual surface in a rendering algorithm, and be
turned back into real light by a display. The IBL process has a natural application
wherever it is necessary to merge CG imagery into real scenes, in that the CG can
be lit and rendered as if it were actually there. Conversely, the light stage technique
allows IBL to illuminate real-world objects with the light of either virtual or real
environments. In its applications so far, IBL has rendered virtual creatures into real
movie locations, virtual cars onto real roads, virtual buildings under real skies, and
real actors into virtually created sets. For movies, video games, architecture, and
design, IBL can connect what is real with what can only be imagined.
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