Section 1 Introduction

It is not uncommon to be working with two variables e.g. x and y that obey a fixed
but unknown relationship y = f{x) between them. The function f{x) relating the two
variables may not be as important as merely having the ability to generate (by
measurement or experimental observation) numerical values (x;, y;) where y; = f{x;). For
example, the performance of a component may be related to a design parameter in a
complicated fashion which is difficult to describe in mathematical terms. In a controlled
environment, the lone parameter can be varied and the resulting performance monitored.

Suppose a consumer testing magazine is interested in the repair costs for a
particular Juxury passenger vehicle after its been in an accident. The test procedure calls
for head-on collisions of the vehicle with a stationary object at various speeds. The cost
of restoring the vehicle to its pre-crash condition is determined. Tabulated results after
several collisions are given below.

Speed (S)  Damages (D)
mph $
10 4500
20 19750
30 43500
40 55000

Table 1.1 Experimental Vehicle Crash Test Data

The table represents a sample of four data points obtained from an unknown
function, D = f{5). The experimental process is rather expensive and further
experimentation might well be cost prohibitive. The magazine would like to publish a
graph for its readers to estimate the cost of repairing the same vehicle resulting from
collisions occurring over a range of speeds.

One approach to approximating the unknown function D = f{8) is illustrated in
Figure 1.1. The approximating function is the result of connecting the data points from
Table 1.1 by straight line segments. The dotted curve represents the actual (unknown)
function D = f{§). To estimate the damages from a 15 mph collision, the approximating
function is evaluated at this speed as shown.

The process of approximating a function f{x) by another function and subsequent
use to estimate numerical values of f{x) is referred to as interpolation. The original
function f{x) may be known in analytical form or possibly only through tabulated values
that come from it. The approximating function, hereafter referred to as the interpolating




function, is ordinarily much simpler than the underlying function f{x). In Figure 1.1, the
interpolating function is a piecewise linear function defined by the data points of fx).
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Figure 1.1 An Approximating Function For the Data in Table 1.1

Interpolating functions are generally restricted to an interval containing the data
points used to generate them. In this example, estimated repair costs should be confined
to speeds from 0 to 40 mph (an additional data point can be assumed at § = 0 mph, D =
$0). Attempting to estimate function values outside the range of the data points is termed
extrapolation. Caution should be used when extrapolating since erroneous and even
nonsensical results are possible,

Interpolation of data representing future predictions is not extrapolation. The two
sets of data points graphed in Figure 1.2 represent historical data as well as forecasts of
the future behavior of two economic variables. Presumably, sound economic forecasting
methods were employed in the process of extrapolating the future values. Regardless,
estimating either quantity from 1997 through 2025 is an example of interpolation.

The piecewise linear interpolating function is a suitable approximating function
under the right conditions. By in large, if the underlying function f{x) is relatively smooth
and well behaved, and the data points are reasonably spaced, then a "connect the dots"
approach using piecewise linear interpolation will produce satisfactory results.
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Figure 1.2 Data Points from Functions Predicting Future Values

As an example, consider the case where the function to be approximated is
actually y = fix) = sin x. The table below contains equally spaced values of sin x from 1
to 2 rad.

i Xi ¥i = flxi) = sin x;
0 1.00 0.8415
1 1.25 0.9490
2 1.50 0.9975
| 1.75 0.9840
4 2.00 0.9093

Table 1.2 Several Points From the Function f{x) = sin x

The piecewise linear interpolating function connecting the five data points and the
function sin x are shown in Figure 1.3. By observation, it appears that the approximating
function is within a few percent of the sine function over the entire interval.




Suppose it is necessary to estimate the sine of 7/2 rad. The y coordinate of point
P, in Figure 1.3 is the estimate, a reasonably close approximation to the actual value of
sin /2. On the other hand, if sin n/2 was estimated from the line joining points
(1, 0.8415) and (2, 0.9093) then the result would be the y coordinate of point P», which
differs significantly from the correct value.
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Figure 1.3 Linear Interpolation of f{x) = sin x to Estimate sin /2

This piecewise linear approach to approximation of functions is the method used
in graphing software to plot known analytical functions. The function is evaluated at
equally spaced points which are then connected by line segments. The graph appears as a
smooth curve when the spacing of points is relatively close. Figure 1.4 illustrates how the
approximating function becomes smooth as the points where the function is evaluated
become more dense. The function being approximated, i.e. graphed is f{x) = ¢".

Piecewise approximating functions are not limited to the case where a linear
function approximates the true function between data points. Later in the chapter we
consider other polynomial approximations to the underlying function f{x) between
consecutive data points.




Figure 1.4 Graph of f{x) =¢" Using Linear Interpolation Between Sampled Points

In contrast to the piecewise approximation of a function, interpolating functions
are frequently composed of a linear combination of elementary functions ¢,(x),i=0,1,,
n. That is, a function f{x) is approximated by an interpolating function f(x) given by

1(x) = 248 (x) + a,8,(X)+...4a, 8, (x) (L.1)

A common choice for the elementary functions ¢;(x) is the monomial function x'".
In this case , the interpolating function is a polynomial, denoted by f,(x) where

fi(x) =) ax' =a, +ax+a,x* +..+a,x" (1.2)
i=0

The nth order Taylor Series expansion of a function f{x) introduced in Chapter 1 is
a good example of the use of polynomial functions intended for approximation purposes.
Interpolating polynomials are discussed in detail in the remaining sections.

There are several reasons why interpolating polynomials are popular when it
comes to approximation of functions. There are efficient algorithms for evaluating
polynomials when "n" is large or the polynomial must be computed numerous times with




different arguments. Differentiation and integration of complex functions is often
required. In some instances the function is only available in tabular form. Polynomial
approximations of these functions are easily differentiated and integrated.




Section 2 Interpolating Polynomials in Standard Form

Before we can begin to approximate a function f{x), some information about the
function has to be known. In the most common situation, a set of N+1 data points (x,, y,),
i=0,1,2,...N is obtained in some fashion, where y; = f{x;). An nth order (n < N)
polynomial can be selected to approximate f{x). The standard form of the interpolating
polynomial is

LX) =a, +ax+a,x* +...+ax" 2.1

This polynomial is not guaranteed to pass through the entire set of N+1 data points
unless the order # is the same as N and the x; values are discrete. When the polynomial
order » is less than W, it will pass through the n + 1 data points used to determine the »n +
1 coefficients @, i=0,1,2,...,n. The n+ 1 equations are generated from

ﬂ,{x;) =ﬂxf)= = ﬂ'l‘ 1: 2.'—'"9 n {2.2)

Figure 2.1 illustrates the case where two different second order polynomials f3(x)

Figure 2.1 Two Second Order Polynomial Approximations to a Function with Five
Known Data Points (N=4,n=2)




In general, with n + 1 data points specified, the leading coefficient a, = 0, and the
interpolating polynomial is nth order. Under certain conditions, the highest order term(s)
may vanish and the resulting polynomial is less than nth order. For example, if three of
the data points in Figure 2.1 happen to be collinear, the coefficient a; of the quadratic
passing through all three points would be zero and the interpolating polynomial reduces
to a linear function.

Equation (2.2) results in a system of n + 1 simultaneous equations which can be
solved for the coefficients a;, i = 0, 1, 2,..., n. The matrix form of the equations are as
follows:

: A SR - X g a, ) ( f(x,)
1 H-1 n
Ly X Sl % & fx)
Poom o wmnh e d, f(x;)
= 1 (2.3)
I o ok o oo n o Xl Ay J(x,,)
1 x, xﬂi ) A A x"u-l IMR ) \ a, 4 f(xu) S

The coefficient matrix above is called the Vandermonde matrix and its
nonsingular as long as all the x; values are different. Since a unique solution exists when
x; # X, i # j, the resulting polynomial in Equation (2.1) is unique, although as we will see
later, it can be represented in different forms.

The case of linear interpolation is considered first. The objective is to find a
linear approximation to a function when two or more data points of the function are
known. The linear approximation becomes the basis for estimation of function values.

The linear approximation f;(x), from Equation (2.1) with n = 1 s,

filx)y=a, +ax (2.4)

where the coefficients ap and @) come from solution of Equation (2.3) with n = 1. That is,

1 x;\{a ;
b 2 )a)-Ge) s
1 x5 0a F(x)
Equation (2.5) is easily solved for ap and a;. Doing so, and substituting the results
into Equation (2.4) yields the familiar equation of a line




filx) = f(x) + [M]{xmxu) (2.6)

X=X,

Figure 2.2 shows two different linear approximations to an unknown function
Sx). In the top graph, (xo, flxg)) = (1.4) and (x1, f{x1)) = (4,11) were used to find fi(x). In
the lower graph, the data points from f{x) are renumbered so that (xg, f{xg)) = (2.9) and
(er, flx1)) = (7.24).

fiky=ap+aix  (ap=4/3, ay = 7/3)

Figure 2.2 Two Different Linear Approximations to an Unknown Function f{x)

Keep in mind, interpolation is valid only for x values within the range of the two
points used to determine the linear function. Therefore, fi(x) in the top graph should be
used for interpolation only when 1 <x <4 and f;(x) in the bottom graph for 2 <x < 7.

Understanding the limitations imposed on the approximating functions by the
use of interpolation is important. We are certainly free to use the approximating
functions fi(x) outside the interval xy < x < x;, however by doing so we may not be using
the "best" linear approximation of the function f{x). After all, both linear approximations
are based solely on two specific points from f{x) and disregard the remaining (known)
data points. In this next chapter we consider methods for obtaining low order polynomial




approximating functions that utilize all the known data points. For now we must restrict
the domain of approximating functions used for interpolation.

An example of linear interpolation is presented below.
Example 2.1
The table of values from the function f{x) = sin x, Table 1.2, is repeated below.

Estimate the value of sin (1.15 rad) using the data point at x; = 1.00, y; = 0.8415 and
choose the second data point to be each of the four remaining points.

i X; ¥i =flx;) = sin x;
0 1.00 0.8415
1 1.25 0.9490
| 1.50 0.9975
1 1.75 0.9840
1 2.00 0.9093

Table 2.1 Several Points From the Function f{x) = sin x

a) (x0, yo) = (1.00, 0.8415), (x1,1) = (‘lF.ES, 0.9490)
L) = f) 4 M} (x=x,)

L: AT
[ £(1.25) — £(1.00)
115) = 1.00) + 1.15-1.00
J1(L15) £ (1.00) 155 100 ( )
= 08415 + ;}.9491?—113415}“‘15_l_ﬁm
1.25-1.00
= 09060

b)  (x0,30) = (1.00, 0.8415), (x1,y1) = (1.50, 0.9975)

f(L15) = f£100) + [f (]‘lsgé:ﬁéﬂm}{1,15—1.1:}:})
= 08415+ [D‘?Eg_?‘s;ls](1.15—1.&{1}
= 0.8883




Performing similar calculations for the remaining two end points produces the
results,

c) (x0, ¥o) = (1.00, 0.8415), (x1,1) = (1.75, 0.9840)
A(1.15)= 0.8700
d) (xo0. yo) = (1.00, 0.8415), (x1,1)=(2.00, 0.9093)
Ai(1.15) = 0.8517
A graphical illustration of the previous calculations is shown in Figure 2.3. It is

clear that the accuracy of the interpolated value diminishes as the right end point moves

further from the x value where the interpolation is performed. Table 2.2 summarizes the
results.

f(1.15)=0.9128

f1(1.15)=0.8517 whenx; =2

e

Figure 2.3 Several Linear Interpolating Polynomials for Estimating sin(1.15 rad)




% - - L) Er er, %
© 100 125 09060  0.0068 0.74
1.00 1.50 0.8883 0.0245 2.68
1.00 1.75 0.8700 0.0428 4.69
1.00 2.00 0.8517 0.0611 6.69

Table 2.2 Accuracy of Linear Interpolation in Example 2.1

Equation (2.6) for linear interpolation is easily implemented with the MATLAB
function “interpl™. For example, MATLAB statements to generate f;(1.15) in the first
two rows of Table 2.2 are

» x0=1;
» f0=sin(x0):;
» xl1=1.25;

» fl=sin(xl):

» ¥x=[x0 x1]:;

» f=[f0 £f1]:

» y=interpl(x,£,1.15)
y s 0.9060

» ¥x1=1.57

» fl=sin(xl);
» x=[x0 x1];

» f=[£0 £1];
» y=interpl(=x,£,1.15)
Y o= 0.8883

The true error, Er = fla) - fi(a) at x = a, with linear interpolation will always be
zero when the underlying function f{x) 1s itself a linear function. Of course, it would be
pointless to implement linear interpolation to estimate values from a known linear
function. In general, linear interpolation produces results which deviate from the true
function value, 1.e. the true error is ordinarily nonzero. Nonetheless, its possible that the
true error could actually be zero or extremely small depending on the actual function f{x)
and the location of the point a. Referring to Figure 2.2, if the two end points (0,0) and
(7,24) were used to fix fi(x), there would be two intermediate points where the true error
would be zero. Both points would lie at the intersection of the linear interpolating
polynomial fi(x) and the actual function f{x).

Higher order interpolating polynomials are required when the results of linear
interpolation may be suspect, either because the spacing between the two end points is too
great or the suspected behavior of the function is highly nonlinear in the region of
interest. In reality, a combination of both conditions warrants the use of higher order
interpolating polynomials.

When 3 data points from a function f{x) are available, the additional data point
provides useful information about the curvature of the function in the neighborhood of




the points. For example, in Figure 2.4 with only points Py(xg, o) and P (x,, ) obtained
from a function y = f{x), it is impossible to account for any nonlinearity inherent in the
function. The interpolating polynomial f;(x) is a quadratic function which passes through
all three points thereby capturing some of the nonlinear behavior of the function. Keep in
mind that the function f{x) is generally unknown. It is drawn as a dotted curve in Figure
2.4 to emphasize this point.

B R

Second Order Interpo

The second order interpolating polynomial f3(x) is uniquely determined by the
three data points (x,, fx;)), i =0, 1,2 which lie on both the function y = fix) and f3(x). In
standard form fi(x) is

f(x) =a, +a,x+a,x* 2.7

where the coefficients ap, a1, and a; are determined from the three data points (xy, ),
(x1, 1) and (x2, y2) which the polynomial must pass through. From Equation (2.7),

fr(x) =a, +ax, +a,x, (2.8)

fi(x) =a, +ax, +a,x,’ (2.8a)




f2(x;)=a, +ax, +a,x,’ (2.8b)

From Equation (2.2) with n = 2, the interpolating polynomial f3(x) and the
function f{x) are identical when x is either xo, x; or x; (refer to Figure 2.4). Replacing
Jalxo) with flxg), fa(x) with fx;), and f3(x;) with f{x;) in Equation (2.8) yields

fix,)=a, +a,x, +:1sz1 (2.9)
f(x)=a,+ax +a,x (2.9a)
f(x)=a, +a,x, +a,x,’ (2.9b)

Note, we could have used y; in place of f{x;) and the same for yy, y» instead of
flx1) and flx;) in Equation (2.8). Notation aside, what’s important is that the constraints
represented by Equations (2.9) allow us to solve for the unknown coefficients ag, a; and
2. Equations (2.9) in matrix form are

A f{x,)
1 x, x°||a |=]f(x) (2.10)
1 x, le a, f(x,;)

where the 3 by 3 coefficient matrix is the Vandermonde matrix previously introduced in
Equation (2.3).

Example 2.2

Find the second order interpolating polynomial that fits through the last 3 points
in Table 1.1 of vehicle crash data. Estimate the damages for a crash at 35 mph and
compare the result to the same estimate based on linear interpolation using the data points
at 30 and 40 mph.

The last 3 data points are (20, 19750), (30, 43500) and (40, 55000). The second
order interpolating polynomial is written

fi(s)=a, +a,5+a,s’ (2.11)
Substituting the data points into Equation (2.11),

1 20 20°\(a, 19750
1 30 30°||a |=|43500 (2.12)
1 40 40° ||a, 55000




Using MATLARB to obtain the solution,

»xl=20;

wxl=30;

wxd=40;

wh=[192750 43500 550001 ;

wA=[1 =0 =x0*=x0; 1 %l xnl*xl; 1 x2 =x2*x2];
wa=inv [A)*b';

wa'

a' = 1.0e+004 *
-6.450000 0.5%43750 -0.00&125

and the mterpolating second order polynomial is
f>(s) = —-64500 + 5437.5 5 — 61.25 5° (2.13)

which can be verified by substituting in the 3 data points. Note, there is a Vandermonde
matrix function in MATLAB 'vander (x)' where x is the vector of x; values. The
Vandermonde matrix returned however is slightly different than the standard form
defined in Equation (2.3). The difference is that the MATLAB Vandermonde matrix
columns are in reverse order compared to its definition in Equation (2.3). The MATLAB
Vandermonde matrix can still be used as the coefficient matrix if we simply rewrite
Equation (2.12) as follows,

200 20 1)({a,) (19750
30° 30 1||a, |=|43500 (2.14)
40° 40 1)la, ) |55000

Hence, when the MATLAB Vandermonde matrix is used, the solution vector a is
[az a1 ap] and not the reverse as in the example above. Use of the MATLAB
Vandermonde matrix function is illustrated below.

»x(=20;

»xl=30;

wx2=40;

wr=[x0 =1 =2];
wb=[19750 43500 5500017 ;
wh=vander (x)
wa=inv (&) *b';

wa'

A= 400 20 1
800 30 1
la0o a0 1

a' = 1.0e+004 *

-0.006125 0.543750 -&.450000




The first order interpolating polynomial f;(s) based on the data points (30, 43500)
and (40, 55000) and the second order interpolating polynomial f5(s) using the data points
(20, 19750), (30, 43500) and (40, 55000) are shown in Figure 2.5. Using second order
polynomial interpolation, the estimated damages for a 35 mph collision is obtained from
f2(35) in Equation (2.13). The result is $50781. The estimated value using linear
interpolation is $49250.

MATLAB functions ‘polyfit’ and ‘polyval’ will produce the same results.
Coefficients for the linear and quadratic interpolating polynomials are computed as well
as the interpolated value of damages resulting from a collision at 35 mph.

»s=[30 401;

wid=[43500 55000];
ma=polyfit(s,d,1l});

B

a = 1150 Q000
»fl_35=polyval (a, 35)
fl_35 = 49250

we=[20 30 40];
»d=[18750 43500 55000];
ra=polyfit(s,d, 2)

»a .

a = -b6l.25 5437.5 -8450
»f2 35=polyval (a, 35)

£f2 3% = 50781.25

The use of interpolating polynomials is straightforward; however caution is necessary
when dealing with higher order polynomials. This is because high order polynomials can
fluctuate dramatically between the sampled data points. Consequently, estimates of the
function, which itself may have exhibit a smooth behavior between sampled points, can

be notoriously inaccurate when high order polynomials are used. Fortunately, it is readily
apparent when this occurs.

Example 2.3 illustrates the tendency of polynomials to vary significantly between
data points.

Example 2.3

The liquid flowrate into a tank is adjustable and measurable. Each time the inflow
is changed, the output flowrate eventually reaches a new steady-state or equilibrium value
as does the height of liquid in the tank. The relationship between output flowrate and
height of liquid in the tank at steady-state is of interest. Table 2.3 contains measurements
of the tank output flowrate (same as the input flowrate) and height of liquid for various
steady-state operating conditions.
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(30, 43500)

(20, 19750)

Figure 2.5 Linear and Quadratic Interpolation of Speed Crash Data in Example 3.2

A deterministic relationship exists between the two variables H and F. There is
a function F = f{H) that could be evaluated at a specific value of H to determine the
corresponding steady-state output flow . For now, let’s assume the actual function f{H)
is unknown. The tabulated data is a sampling of points from this function.

Height of Liquid in Tank Output Flowrate
H(f) F (gpm)

0 0

1 50

4 100

2 150

16 200

25 250

36 300 r

Table 2.3 A Sample of Steady-State Operating Conditions for a Liquid Tank
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The 7 data points (H, F}), i=0,1,2,...,6 will uniquely determine a 6" order
interpolating polynomial, fs(H). The MATLAB function ‘polyfit’ is the quickest way to
obtain the vector of coefficients a = (as, as, as, a1, a2, a1, ag) that defines the interpolating
polynomial f5(H) below.

fo(H)=a,+aH+a,H va,H +a,H* +a,H’ +a H" (2.15)
H=[0149 1s 25 3&];
F = 0:50:300;
a = polyfit (H,F,6)
a = -5.260%9=-005% 4.8225%e-003 -1.612%=-001 2.45662+000

-1.762le+001 6.5321e+001 =-2.97172-011

Figure 2.6 shows the data points and the interpolating polynomial. As expected,
all the data points lie on the interpolating polynomial. However, it may be somewhat
unsettling to discover the estimated outflow with 20 ft of liquid in the tank is
considerably less than the outflow measured when the liquid level was 16 ft. (Refer to
Figure 2.6) Even worse, suppose you rely on the interpolating polynomial to predict
what the outflow would be when there was 30 ft. of liquid pushing the fluid out. From
MATLAB, the results are:

wH=[0 174 9 16 25 38)];
wF=0:50:300;
wampolyfit (H, F, 6)

»fé 20=polywvalia, 20)
»f6 30=polywval(a, 30)

£6 20 = 168.96
£6 30 = 616.64

Of course, one look at the graph of f;(H) is enough to eliminate its consideration
as an interpolating polynomial over the range of fluid levels 0 < H < 36.

In case you're wondering, the dotted function in Figure 2.6 is the correct function
F = fiH) for determining the outflow F for any fluid level H. Using some simple
principles from Physics, it can be shown that

F=f(H)=c/H (2.16)

where the constant of proportionality ¢ is easily computed by substituting in any one of
the measured data points (other than H =0, F = 0). Using H = 25 ft., F =250 gpm, gives

250 = ¢+/25 from which ¢ = 50 gpm/ ft?. Since we know the true function f{H), let’s

evaluate the correct outflow for several different fluid levels and compare the results to
the estimated outflows using the sixth order interpolating polynomial.
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Figure 2.6 Interpolating Polynomial for Data in Table 3.3

Using MATLAB,

»for H = 5:5:35

# f6_H = polyval(a,H)

B F = 50*H."0.5;

» Diff = F - £6 H

-1 fprintf{'H = %.1f, Flest) = %.1f, Fltrue] = %.1f,
oS Fi{true) = Fl{est) = %.1f\n',H,f5_H, F, Diff)

H= 5.0, Flest}) = 106.6, F{true) = 111.8, F(true) - Flest) = 5.2
H=10.0, Fiest) = 164.4, F{true) = 158.1, Fitrue) - Flest) = -6.3
H=15.0, F(est}) = 203.5, Fi{true) = 193.6, Fitrue} - F{est) = -9.8
H= 20.0, Flest) = 169.0 F{true) = 223.6, Fitrue} - F{est) = 54.6
H=25.0, Flest) = 250.0, Fltrue) = 250.0, F(trus} - Flest) = 0.0
H=30.0, Flest) = 616.6, Fitrue) = 273.9, Fitrue) - F{est) = -342.8
H = 35.0, Flest) = 564.9, Fitrue} = 295.8, F(true) - Fl{est) = -269.1

Notice that the estimated flow from the interpolating polynomial, F(est) is within
5% of the correct flow, F(true), up to roughly 15 fi. of liquid in the tank.
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High order polynomials should not be dismissed entirely when it comes to
interpolation. Its possible to obtain reliable estimates in certain situations. For example,
we might try obtaining additional data points in the interval between H = 16 ft. and H =
36 ft.  The order of the interpolating polynomial would increase by one for each
additional point, however the resulting polynomial is constrained to pass through the
added points leaving less “wiggle room™ to behave as it did previously.

The higher order polynomials could still exhibit fluctuations in the original
interval where the inaccuracies were most pronounced (16 < H < 36). To make matters
worse, serious errors could be introduced where the original interpolating polynomial f;
(H) was fairly accurate, i.e. from 0 ft. to 16 ft. Figure 2.7 shows what happens when the
original set of data points in Table 2.3 is supplemented with three additional points from
JUH) in Equation (2.16). The top graph is the same as Figure 2.6 and the lower one shows

the dramatic improvement resulting from the use of fo(H) as the interpolating
polynomial.

It should be readily apparent at this point why interpolating functions should not,
as a rule, be used for extrapolation. Indeed, the sixth order interpolating polynomial (/)

has a zero near /{ = 37 ft. and the ninth order polynomial is grossly inaccurate as the
height increases above H = 36 ft.

BOO . . . - ; : ,
BOO - f;;.( H) i
E
S400t ]
L A P
200 H) J
D 1 i 1 L i 1 i
0 5 10 18 Zﬂ 25 aa 35 40
Hf)
4m T L] T L] T T ]
fol H) ——
300 4
5 |
E 200 + J
= T 1)
100 | A
Additional Data Points
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H {ft)

Figure 2.7 Sixth and Ninth Order Interpolating Polynomials for Interpolation of
Flowrates Based on Fluid Level
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Under the right conditions, interpolating polynomials can be used to optimize
functions described by discrete data points. That is, minima and maxima of interpolating
polynomials can be used to estimate local or global extreme values of the underlying
function f{x) despite the absence of an analytical form. In a specific application, an
analyst familiar with the inherent relationship among the variables will ordinarily be able
to discriminate between the existence of a true optimal condition and a spurious one
resulting from the use of polynomial interpolation. For example, the sixth order
polynomial in Figure 2.6 indicates the presence of a local maximum between H = 30 fi
and H = 35 ft. Physically this makes no sense and in fact is sufficient reason to reject
using fs(H) over that interval.

The location(s) of extreme points of an interpolating polynomial can be found by
looking for critical values, i.e. zeros of the first derivative or by observation of the
interpolating function in the region of interest. The following example demonstrates how
interpolating polynomials can be used to solve for an optimal condition.

Example 2.4

An Expressway Authority must determine the access toll charge for a road under
its jurisdiction. Based on preliminary studies the authority has obtained the following
data relating monthly traffic will the toll charged.

x, Toll ($) $025 | $0.50 | $0.75 | $1.00 | $1.25
v, Monthly Traffic | 600,000 | 450,000 | 200,000 | 100,000 | 40,000

Monthly payments to bond holders to pay off the long term bonds used to finance
construction of the expressway is $ 150,000. The toll will be a multiple of 5 cents.

a) Use a fourth order interpolating polynomial y = fi(x) to approximate the true
relationship y = f{x) between monthly traffic and the access toll charge. Plot the data
points and the interpolating polynomial evaluated at 5 cent toll increments on the
same graph.

b) The monthly profit P is the difference between the monthly revenue, R = xy, and the
fixed bond payment ¢ = § 150,000. Use the interpolating polynomial y = fi(x) to
generate a second curve to approximate the relationship between P and x.

¢) Estimate the maximum profit and the corresponding toll charge to generate the
optimum profit.

d) What should the toll be set at if the authority wishes to maximize ridership without
losing money each month?

A MATLAB m-file was written to generate the graphs below. From the bottom
graph, a toll of § 0.55 will result in optimized monthly profits of $50,460. Zero profit is
expected at tolls of § 0.30 and $ 0.80 with maximum ridership of nearly 581,000 vehicles
per month at the lesser toll.
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Figure 2.8 Optimum Toll Selection Based on Interpolation of Traffic vs. Toll Data
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Section 3~ Newton Divided-Difference Interpolating
Polynomials

The standard form for representing an nth order interpolating polynomial is
straightforward. There are however, other representations of nth order polynomials
which on the surface may seem a bit more unwieldy, but require less manipulation to
arrive at. One such form is the subject of this section.

Given a set of nt+1 data points (x;, y;), i=0,1, 2, ..., n  where the x; are all
different and the y; are sampled from an underlying function y = f{x), the nth order
interpolating polynomial can be expressed as

SR = by +b(x = x) 4By (x =X, )X =) #oeers 4 b, (X=X WX —X) - (x—x,)  (3.1)
Before we consider how to determine the coefficients, observe that Equation (3.1)
15 1n fact an nth order polynomial as evidenced by the last term which includes the highest

power of x, namely x". All powers of x are present in Equation (3.1) despite the fact that

the coefficients of say x", x', x%,...etc. are not as obvious as when the polynomial is

expressed in standard form (see Equation 2.1). Since there are n+1 independent
coefficients byavailable, i=0,1,2,...,n we can be assured there is at most an nth order
polynomial that passes through the given data points.

The rationale for selecting the analytical form in Equation (3.1) will be apparent
after we look at a few simple examples.

A)  Given (xg, yo), (x1,y1) where yy=flxg) and y; =flx|)
The first order polynomial for the case when n = 1 through the two data points is
fi(x)=b, +b,(x-x,) (3.2)
Substitution of the two data points (xg, yp), (x1, y1) into Equation (3.2) gives
fi(x,) =b, +b,(x, — x,) (3.3}
fix)=5b+b(x —x,) (3.3a)
Solving for b and b, yields,

by = £1(x,) (3.4)




bl :fI(xl}_fl{xﬂ}

X

(3.4a)

1 A

By design, the interpolating function fi(x) and the actual function f{x) from which
the data points were obtained are equal at x = xp and x = x, (see Figure 2.2). As a result,
by and by can be expressed in terms of the given data,

b, = f(x,) (3.5)
b= J(x)=f(x,) (3.53)
1 X

Example 3.1

The monthly payment on a 30-yr mortgage of $100,000. for two different annual
interest rates is given in Table 3.1 below. Use an interpolation formula in the form of

Equation (3.2) to estimate the monthly payment corresponding to an interest rate of 8.25
%o per year.

Data Point Number Annual Interest Rate Monthly Payment
k i Ap = fiy)
0 7% $ 665.30
1 10 % $ 877.57

Table 3.1 Monthly Payments for $100,000 30-yr Mortgage with Different Interest Rates:
Two Data Points

The first order interpolating polynomial is written

Ji@y=b, +b,(i-i,) (3.6)
where

by = f(iy) = f(7) = 66530

_ G- f(E,) g FA0) =17 _ 877.57-6653

b
' M 10-7 107

=70.76

The estimated monthly payment is therefore

£,(825) = 6653+ 70.76(825-7) = 753.68




B)  Given (xg, yo), (x1, 1), (x2, 32) where yo=flxg), y1 =flx1), and y2 = flx;)
The second order polynomial is written
fi(x)=by+b(x—x,)+b,(x=x,)x—-x,) (3.7)

where by, by, and b, are determined using the same procedure employed in the previous
example.

Sfi(x) = b, +b(x, — X)) +b, (xy —xg W2y — x,) (3.8)
fo(x))=by +b,(x, = x,)+b,(x, —x,)x, — x,) (3.8a)
fl(x3]=hn+b,{x2—xu}+b2[x1—xn}(x2—x,] (38]}]

Solving for by, by, and b, gives

by = f(x,) (3.9)

p =L ) =S (%) (3.9)
=X

s e X, —X,

[f(sz ~f{xl)]_[f(x1}—f(@1
b, = (3.9b)

X3 =X

Once again, each f3(x;) was replaced by fix;) so the coefficients could be expressed
in terms of known quantities.

There are definite advantages to representing interpolating polynomials in the
nonstandard form. In the previous example, there is a sharp contrast in the method of
solving for the three coefficients between the standard form representation of a second
order polynomial in Equation 2.7 and the nonstandard form of Equation (3.7). In
standard form, ag, a1, and a; are obtained by solving the system of simultaneous equations
given in Equation 2.10. On the other hand, by, b, and b; are obtained sequentially as
indicated in Equations (3.9), (3.9a) and (3.9b).

Given the choice, a sequential solution is usually preferable. The savings in
computation is real. It is faster to evaluate explicit formulas for a set of coefficients one
at a time than it is to implement a matrix-based solution where the coefficients are
obtained in a parallel fashion, i.e. solution to a system of simultaneous equations. This
argument may be less convincing when using calculators or computers with programs




designed to solve simultaneous equations. Nonetheless, the solutions are obtained in
fundamentally different ways.

The second advantage of the nonstandard representation is more compelling. The
expressions for by and b, in Equations (3.9) and (3.9a) are the same as in Equation (3.5).
Why 1s this important? Suppose you just completed the process of finding an
interpolating polynomial for a given set of data points. There may be some doubt in your
mind concerning the accuracy of results based on the use of this polynomial. Later on
there will be a discussion of quantitative methods for approximating the errors inherent in
interpolation. More data points may be required to reduce the estimated errors.
Incorporating additional data points is easier with the nonstandard representation for the
interpolating polynomials. This is because each additional data point requires the
computation of a single coefficient for the new term in the polynomial. This is illustrated
in the following example which extends the results obtained in Example 3.1.

Example 3.2

Suppose we obtain two additional data points in the previous example dealing
with the estimation of mortgage payments. The new data points correspond to 8 % and 9
% loans. Use one of the two additional points to obtain a second order interpolating
polynomial. Estimate the monthly payment for an 8.25 % loan.

We must choose one of the two new data points to find the second order
interpolating polynomial f(i). Our intuition suggests the data point for an 8 % loan is the
wiser choice because its closer to the point where the estimate is required, i.e. 8.25 %.
The second order polynomial is obtained from the data points corresponding to k = 0, 1,
and 2 in the following table. It is given in Equation (3.10).

Data point Number Annual Interest Rate Monthly Payment
k g A= flip)
0 7 % $ 665.30
1 10 % $ 877.57
2 8 % $ 733.76
3 9% $ 804.62
Table 3.2 Monthly Payments for $100,000 30-yr Mortgage with Different Interest Rates:
4 Data Points
L@ =by+b(i—i,)+b,(i—i,)i—1,) (3.10)

Coefficients by and b, were determined in Example 3.1 using the first two data
points. The remaining coefficient b, is obtained from Equation (3.9b) as




L= =

[f(ig}—f(f]}}_ [ () —f{rﬂ
b, =

i, — i,

[T331T6 —~ 87757 ]

[8??.57 = 665.3{}]
7

N &-10 A 10-7
8 _
= 1.148
The polynomial f3(r) is therefore,
S5 (i) = 6653+ 70.76(i —i,) + 1.148(i —i, )i —i,) 3.11})

and the estimate of payments for an 8.25 % mortgage is now

£,(825)

6653+ 70.76(8.25—-7) + 1.148(8.25—- 7)(8.25-10)

75124

The previous two examples are somewhat academic in nature. Quite obviously,
the loan officer at the bank will not be interested in your calculations to estimate the
monthly payments. He or she has access to the function 4 = f{i) from which you obtained
several data points in the Sunday paper. Let's see how close your two estimates were to
the correct answer. Figure 3.1 includes graphs of the true function f{i) as well as the
interpolating polynomials fi(7) and f3(i). The upper plot includes the data points as well.

It is clear from looking at the upper plot that either interpolating function f;(i) or
J2(i) will provide accurate estimates of the true monthly payment function f{i) over the
entire range from i = 7 % to i = 10 % and then some. The lower plot is an enlargement of
cach graph in the region about i = 8.25 %, the interest rate under consideration. Here we
see that the quadratic interpolating polynomial fi(i) and the real function f{i) are virtually
indistinguishable. You may be interested in knowing that the true function A = f{i) is
given by

_ pen - p 2001+ Hano)"
Amdi=F [(1+ Ha00)" — 1] =

where P is the mortgage amount, n is the loan period in months and i is the annual
percent interest rate. Perhaps you are surprised at how close the graphs of the low order
interpolating polynomials f1(7) and f3(i) are to the true function f{i) which, based on its
analytical form in Equation (3.12), does not appear to resemble a polynomial function.
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Figure 3.1 First and Second Order Interpolating Polynomials fi(i), f2(i) and the True
Function f{i)

Table 3.3 illustrates the accuracy one can expect when using low order
polynomial interpolation over the range of interest rates under consideration.

i (%) A Si() Er fa(i) Er
7.5 699.21 700.68 -1.47 699.25 -0.04
8.5 768.91 771.43 -2.52 768.86 0.05
9.5 840.85 842.19 -1.34 840.76 0.09

Table 3.3 Errors in First and Second Order Interpolation for Examples 3.1 and 3.2

We still have an additional data point that could be used to increase the order of
the interpolating polynomial. The formulas for higher order coefficients become
unwieldy. Fortunately, there is a framework for determining the coefficients b, i =0, 1,

2, ..., n of a general nth order interpolating polynomial as given in Equation (3.1).

The general approach is based on the evaluation of finite divided differences.
Given a set of nt+1 data points [x, fix)], i=0, 1, 2, ...., n the finite divided differences




of various orders are defined in Equations (3.13) - (3.13e). Note how the divided
differences are obtained recursively from two divided differences of order one less.

(0 th order flx]l = fix) (3.13)
1 st order Sflx,x] = f[t'—]_{[—x-d, i#] (3.13a)
X =X,
_ S)-f() it
X;=%;
2 nd order Shxx,x] = f{x”xi]_jt[xj"rﬂ’]ﬁ izjzk (3.13¢)

X~

FG)=F@)  f6)-f@x)
s e i Sl (3.13d)
X=X

f[xﬂ,xn,w...,xg + 4 ] _f['xn-| 1 Xpg s eee Xy ’xD] [:313'3)
Xy =Xy

with SEdBe ™ TRy X X5

When there are 3 data points (n = 2), the divided differences f[x], f[x), xp], and
fx2, x1, xo] are identical to the coefficients by, by, and b,. [see Equations (3.14) - (3.14h)]

The coefficient b of the interpolating polynomial f;(x) is numerically equal to the
first of the three zero order finite divided differences, i.e. the one that depends on the data
point [xo, flxo)]. The coefficient b, is equal to the first of the two first order finite divided
differences, i.e. the one that depends on the data points [xq, fxp)] and [x;, fix;)]. Finally,
the coefficient b; is equal to the first and only second order finite divided difference, i.e.
the one that requires all three data points, [xq, fixo)], [x1, f{x1)] and [x2, fx2)].

In general, with n + 1 data points there are n +1 zero order divided differences, »
first order divided differences, n-1 second order divided differences, etc. up to one nth
order divided difference. The first computed divided difference of order "i" is equal to
the coefficient b, i=0,1,2, ..., n.

fIx] = fx) (3.14)
= b, (3.14a)
flxyx) = LEalzSl] (3.140)
1%
7




J(x) = 1 (%)

(3.14d)
X, — X,
= b (3.14e)
fTan3x) = LEetl/n%] (.14
X =X
[f{x;_]—f(xli}_[f(x.)—f(xi)]

Xy =X, X =X,

= = (3.14g)
Xy — Xy

= b, (3.14h)

Table 3.4 is a helpful aid in remembering how to compute the finite divided
differences. The coefficients b, i = 0, 1, 2,..., n of the interpolating polynomial in
Equation (3.1) are the first finite divided-difference entries in their respective columns.
The polynomial is referred to as the Newton divided-difference interpolating polynomial.
The arrows indicate which finite divided differences are used to calculate the higher order
ones. Always remember, the denominator of any divided difference is the difference
between its {irst and last argument.

Al Al Joal] Sl ]
xo  flxo]
/,vf[xbxu_]
x1 il Jx2, x1, x0)
]>ﬂx2=-rl]/ ]
X2 flx Mx3, x2, x1
>ﬂxa,-‘fﬂ/v

x3  fxa] Jx4, x3, x3]
§ . \\“ f[xah / é
. f[xn-l, Kniyviis X2, X
_,f[xm Xn-ls Xp2...,. X7, IU]
- : SXns Xpels o X2, X1] <
Xp-2 _}‘I_I.rg-z]\‘ .
_f[xn-ly Xp-2 .
Xn-1 ﬂxn-l]< J]E_f[xm Xn-1s -xn-l]
/ f[xrr: Xp-1]
]

Xn  Jxa

Table 3.4  Table of Finite Divided Differences for a Function f{x) Known at Discrete
Data Points




Example 3.3

Torque-speed data for an electric motor is given in the first two columns of the
table below. Find the equation of the Newton divided-difference interpolating
polynomial that passes through each data point and use it to estimate the torque at 1800
pm.

Speed, © Torque, T; Al Sl Al Sl
(rpm x 1000) (ft-1b)

0.5 31 (by)
-6 ()

1.0 28 -2 (bs)
-8 -6.667 (bs3)

1.5 24 -12 6 (bs)
-20 5.333

2.0 14 -4

' -24
2.5 2

Table 3.5 Data Points and Finite Divided Differences for Example 3.6

The notation fi[ 1, A[ ], f5[ ], and fa[ ] represent finite divided differences of
order 1 through 4, respectively. The finite divided differences and the coefficients by, b,
by, b3, and by of the interpolating polynomial are shown in the table. The result is,

T(@) = by +b(0-m,)+b(@-0,)o-0,)+b@-0,)0-o,)o-,)

+ b (@ -0, ) 0-0,)o-0,)0-0,) (3.15)
T(w) = 31-6(w-05)-2(&-05)(@-1)-6667 (@ -05)a - 1)a-15)

+ 6 (w-05) @ - 1)w—-15)w-2) (3.16)
T(18) = 31-6(18-05)—2 (18- 05)(18—1)— 6667 (18— 0.5)(18 — 1)(1.8 - 15)

+ 6(1.8-05)(18-1)(18-15)(18-2)

T(18) = 187




The true function T'= flw) is not available to assess the accuracy of this estimate.
Conceivably, one could derive a structure or analytical form of the function based on
established engineering principles and scientific laws. A number of physical parameters,
i.e. constants would likewise have to be known before the function could be used for
evaluation of motor performance. Rarely is this ever attempted in situations where all
that is required is a reliable estimate of how a particular device, component or system will
perform. Conversely, a model of the torque motor based on scientific principles is far
more useful to an engineer designing a motor to satisfy specific design criteria.

There are situations where a combination of empirical and scientific modeling are
used in conjunction with each other. Imagine a situation where a theoretical model is
known, however it may be of such complexity that data points are expensive to obtain. In
this situation, a minimum number of data points can be obtained from solution of
equations (differential and algebraic) comprising the scientific model. The data points are
then used as a basis to generate an empirical model for interpolation.

Little has been said up to this point about the ordering of the data points, primarily
because an nth order polynomial passing through n+1 data points is unique and the
ordering is irrelevant. Changing the order of the data points will affect the representation
of the polynomial; however the polynomial itself has not changed. The selection of
which n+1 data points to draw from a larger sample to obtain an nth order polynomial is a
different matter. In this case, some thought should be given as to which n+1 points
produce the best interpolating polynomial. Example 3.4 illustrates these points.

Example 3.4

Consider the data in Table 3.2. Find the third order Newton divided-difference

interpolating polynomial fi(i) containing the 4 data points using different orderings of the
data points. Estimate the function value /{8.25).

The data from Table 3.2 and the divided differences are given in Table 3.6.

k I Ay = flix) Al Al Al
0 7 66530 (b

68.46 (b))
1 8 73376 1.200 (bs)

70.86 -0.05167 (bs)
2 9 80462 1.045

72.95
3 10  877.57

10




Table 3.6 Finite Divided Differences and Newton Interpolating Polynomial
Coefficients for Data in Example 3.2

The coefficients by, by, b, and b3 are read directly from the table. The resulting
third order Newton divided difference interpolating polynomial is given in Equation
(3.18)and the polynomial is then used for the interpolation of f{8.25).

) = b, +h (i —dg) + Dy (1 —ig )i — i) + by (i —ip )i =i, Wi = i;) (3.17)
Si(i)

S1(823)

653+ 68.46(i — )+ 1.2(i = 7)(i - 8) — 0.05167(i — 7)(i — 8)(i — 9) (3.18)

653+ 6846(825-7) +12(825-7)(825-8) - 0.05167(825—T)(8.25-8)(825-9)

751.26

In Table 3.7 the data points are reordered and the process of finding the
interpolating polynomial is repeated.

k it A= fli) Al Al Sl
l'; 7 665.30 (by)
70.757 (b))
1 10 877.57 1.148 (b3)
71.905 -0.0515 (b3)
2 8 733.76 1.045
70.860

3 9 804.62

Table 3.7 Finite Divided Differences and Newton Interpolating Polynomial
Coefficients for Data in Example 3.2 with Reordering of Data Points

The new polynomial based on reordered data points and the interpolated value are
() = 653+70.757(i = 7) + 1148(i = 7)(i —10) — 0.0515(i = T)(i = 10)(i —=8)  (3.19)

f3(825)

653+70.757(8.25-7) + 1148(825—- 7)(825-10)
—0.0515(825-7)(825-10)(825-8)

= 75126
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As expected, the estimated values are the same in both cases. It's a simple matter
to show that the polynomial expressions in Equations (3.18) and (3.19) are in fact the
same third order polynomial.

Restricting the interpolating polynomial to be 2™ order will produce as many
different 2™ order polynomials as there are ways to select groups of three points from a
total of four data points. In general, for a specific value of i, referred to as the interpolant,
each interpolating polynomial f3(i) will yield a different estimate of f{i). One such
estimate of f{8.25) has already been computed using the first three points in Table 3.2.
The optimal choice of data points for determining the second order interpolating
polynomial should be the set of points closest to the interpolant. This will be proven
later.

Generally speaking, when Newton divided-difference polynomials f(x) are used
for interpolation to estimate values of a function flx), we should expect a difference
between f,(x) and the true function value f{x). In the case of linear interpolation, the error
incurred, R;(x) is the difference between f{x) and fi(x) and it varies over the interval x; <
x = x; as shown in Figure 3.2. By definition, R(x) satisfies

F(x)=fi(x)+ R (x) (3.20)

Solving for R;(x),
R,(x) = f(x)- f,(x) (3.21)

We should not expect to implement Equation (3.21) when f{x) is unknown. If
there was some way to estimate f{x), we could obtain an approximation for the error term
or remainder R;(x) as its sometimes referred to. From Figure 3.2, observe that f3(x) could
be used for that purpose. That is,

R]I:I] gfz [I]-ﬁ{X} (322}

The right hand side of Equation (3.22) is nothing more than the second order term
of the polynomial f>(x). This is easily verified by looking at Equations (3.2) and (3.7).
Thus,

R (x)=b,(x—x,)(x-x,) {3.23)

However, in order to use Equation (3.23), an additional data point [x;, f{x;)] is
required to obtain b;. How good is the approximation of R(x) from Equation (3.22) or
equivalently Equation (3.23)?7 Comparison of Equations (3.21) and (3.22) reveals that the
approximation of the error term Ry(x) depends on how close the function f{x) and the
interpolating polynomial f5(x) are. Figure 3.2 illustrates this point graphically. If the

12




function f{x) happens to be a quadratic polynomial, then f3(x) and f{x) are identical and the
estimate of R;(x) would be exact for any value of x.

A numerical example will help clarify the process of approximating the errors
occurring from the use of Newton divided-difference interpolating polynomials.

hHx)-£i(x)

Figure 3.2 Estimating the error R)(x) in Linear Interpolation

Example 3.5

The solution to the differential equation % wHy+y()=1 when y(0) = 0 is

¥)=1-e’,1=0. LetT be the time it takes for the solution y(¢) to reach the value A,
where 0 £ 4 < 1, i.e. Y(T) = 4. Several points (7, 4) on the solution y(¢) are tabulated
below. A low order polynomial is needed for interpolation of 7' for a given value of 4.

T A T A
0.0000 0.0 0.6931 0.5
0.1054 0.1 0.9163 0.6
0.2231 0.2 1.2040 0.7
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0.3567 0.3 1.6094 0.8
0.5108 0.4 2.3026 0.9

Table 3.8 Data Points for Finding Interpolating Polynomial to Estimate T Given A4

The underlined data points were selected to determine a third order Newton
divided-difference polynomial which can be used for interpolation over the interval. The
divided difference table is shown below.

i A Ti=fld) Al fal] fil] Sl
0 0.0 0.0000
1.1890
1 03 03567 13275
2.1183 4.7745
207 12040 5.6246 7.6676
5.4930 8.6083
309 23026 7.3462
' 4.0238
4 05 06931

Table 3.9 Divided Difference Table for Finding f3(A4) and fi(A4)
From the table, the third order interpolating polynomial f3(A4) is

£(A) = 11894 +13275A(A — 03) + 47745 A( A - 03)( A - 0.7) (3.24)

Suppose we wish to estimate f{0.45), the time required for the solution to reach
0.45, using f3(0.45). The result is

£,(045) = 1189(045) +13275(0.45)(0.45 — 0.3) + 4.7745(045)(0.45 — 0.3)(0.45 - 0.7)
= 05441
Choosing the additional data point (0.5, 0.6931) because of its proximity to the
interpolant value 0.45 allows us to find the 4™ order interpolating polynomial fi(A).
Table 3.9 includes the additional finite divided differences calculated from the new data

point, The result is

fi(A) = 11894 +13275A4( A —03) +4.77454( A - 03)(4 - 0.7)

+ T.66754(A-03)(A-0T)(A-09) (3.25)
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and the improved estimate of f{0.45) is therefore

f,(045) = f,(045)+7.66754(A—-03)(A-07)(A-09)

0.5441+ 7.6675(0.45)(0.45 — 0.3)(0.45 — 0.7)(045 - 0.9)

0.5441+ 00582

]

= 06023

Based on reasoning analogous to that used to obtain R,(x) in Equation (3.22), the
error term R3(0.45) is approximated as

R,(045) = f,(045)- f,(045)
~ 00582

It is easily shown that the true function relating T and A is given by
T=f(4)=-In(l1- A) (3.26)

Figure 3.3 shows two graphs. Each one contains the complete set of data points
from Table 3.8 and the true function fl4). The top graph contains the third order
polynomial fi(A) and the four data points used to find it are shown with an asterisk. The
lower graph contains the fourth order polynomial fi(4). The same four data points used
to find fi(4) and the one additional point used to find f3(4) are shown as asterisks.

The true error R3(0.45) is also shown in Figure 3.3. As expected R3(4) is zero
when A is any of the four data point values. The exact value for R3(0.45) is obtained as

the difference between f{0.45) and f3(0.45). The result is

R,(0.45)

Il

£(045) = £,(045)

]

—In(1- 0.45) - 05441
= (0.0537
which should be compared to the estimated value of 0.0582 previously computed.

Keep in mind that f3(4), fa(4), and Ri(A) are all sensitive to the choice of data
points selected from Table 3.8. Knowing a priori that f{0.45) is to be estimated would
dictate a different choice of data points as the basis for determining an interpolating
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function to approximate fl4). The 4 closest points to the interpolant value 0.45 are

Figure 3.3 Third and Fourth Order Interpolating Polynomials and the True Function for
Data in Table 3.8

At this point it is necessary to introduce a new function f[x, x;, xg]. similar to a
second order divided difference, defined as

FIx, 1= 1 1x.x,]

Flx.x.x,] 537
x-xa
fx)-f(x) _ F(x) - F(xy)
< it i (3.27a)
Xo= 2y

However, unlike the second order finite divided differences previously
encountered, its first argument x is treated as a variable. Of course, once x assumes a
numerical value, f[x, x;, xy] becomes an ordinary second order divided difference. The
importance of f[x, x), xp] is its relationship to R;(x) which is presented here and left as an
exercise for later.
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Section 4 Lagrange Interpolating Polynomials

In the previous sections we encountered two different ways of representing the
unigue nth order (or lower) polynomial required to pass through a given set of n+1 points.
Yet another way of writing the polynomial, constrained in the same fashion, is presented
here. It is referred to as Lagrange's form of the interpolating polynomial.

Once again, we assume the existence of a set of data points (x;, ;),1=0,1, ..., n
obtained from a function f{x) so that y; = fix), i =0, 1, ..., n. A suitable function for
interpolation /(x) is expressible as

1) = ) L) fe) @)
i=0
= Lo(): f(x0)+ L (¥)- F(x)) 4ot Ly(®)- £ (%) (4.1a)

The functions L{x),i=0,1, ..., n are chosen to satisfy

0 X=X X s Xy s Xppyseanss Xy
Li(x) = 4.2)

1 x=x

Before we actually define the L{(x) functions, let's be certain we understand the
implications of Equations (4.1) and (4.2). The best way to accomplish this is simply to
choose a value for "n" and write out the resulting equations. Suppose we have the four
data points [x;, fix;)], i=0, 1, 2, 3. From Equations (4.1) with n = 3, the interpolating
function /(x) becomes

I(x)

3
ZL:(x)+f (x;) (4.3)
i=0

I

Lo(x)- f(xg) + Ly (x)- f(x)) + Ly (x) - f(x2) + L3(x)- f(x3)  (4.33)

and it remains to be shown that I(x) is identical to f{x) when x is any one of the four data
points. Evaluating I(x) at xg, x;, x; and x3,

I

1(xp)

I(xy)

Lo(xg) - f(xg) + Ly(xg) - f(x) + La(xg) - f(x2) + La(xp) - f(x3)  (4.4)

Lo(xy)- f(xp)+ Ly(xy) - f(x)) + La(xy) - f(x2) + L3(xy) - f(x3)  (4.4a)




f{xzj - Ln{-x;}'f(xg)+L](I:}'f(x|}+Lg(xz)'f(xz)"'L;(-xz}'f(xl] {4~4b}
I(x;) = Ly(x;)- fx)+ Li(x;) f(x,) + L (x,) - f(x,) + Ly(x,) - f(x;) (4.4c)

According to Equation (4.2), Lp(xo) = 1 and Li(xp) = La(xp) = Li(xg) = 0.
Equation (4.4) is simplified as shown below.

1(x,) Ly(xg) f(x)+ Ly (xg) - f(x,) + Ly (%) fry) + Ly (x) - f(x5)

L f(x) +0- f(x,)+0: f(x,)+0- f(x;)
f(x,)

By the same reasoning, f(x;) = flx;), I(xz) = fx2), and /(x3) = f{x;) which means
the interpolating function /(x) passes through the given set of data points.

The analytical form of /(x) depends on the functions Li(x), i = 0,1, ..., n that

satisfy Equation (4.2). They are called Lagrange coefficient polynomials and are defined
as follows:

Li(x) = H [;:?’] i=0,1,2,...,n (4.5)

FEOL, b, TET £

The symbol [ in Equation (4.5) is a symbolic notation for multiplication in the
same way the symbol 2. denotes summation of its arguments. To better understand
Equation (4.5), L{(x) are expressed in a more explicit form. Given below are expressions
for Ly(x) through L3(x) when there are four data points (n = 3).

R T (F=x x—x Mx—x3) (4.6)

(xg —x1 (xg — x2 )(xp — x3)

(x = x0)(x — x)(x = x3)
(xy —xg Mxp — x2 )(x1 — x3)

i=1, Li(x) (4.6a)

; (x —xp)(x = xp )(x — x3)
g L 4.6b
2(%) (x2 — xpXxz = x1)(x2 — x3) =

i=3, Ly = FRx-n)x-x) (4.6¢)

(x3 = x0)(x3 —x1)(x3 —x3)




Notice that each Lagrange coefficient polynomial in Equation (4.6) is a third
order polynomial as a result of the x° term in the numerator. For the general case when
there are n+1 data points, the Lagrange coefficient polynomials L{x) in Equations (4.1)
are nth order polynomials and therefore so is the interpolating function /(x). Henceforth
we shall represent the interpolating polynomial /(x) in Equation (4.1) by f(x) and refer to
it as the Lagrange interpolating polynomial.

The advantage of Lagrange interpolation in comparison with the standard
polynomial form (Equation 2.1) or the Newton divided-difference representation
(Equation 3.1) is its simplicity. That is, the Lagrange interpolating polynomial can be
determined without need of solving a system of simultaneous equations or performing
repetitive calculations as in the case of Newton interpolating polynomials where a table of
divided differences is required. Owing to the manner in which the Lagrange coefficient
polynomials are defined in Equation (4.5), the Lagrange interpolating polynomial is
written by inspection of the data points using Equation (4.1).

We demonstrate the procedure in the following example.

Example 4.1

The measured voltage as a function of time across the terminals of a 5 ohm load

with three different types of batteries, each with a nominal rating of 1.5 volts, is tabulated
below,

t (hours) v (volts)
Rechargeable Rechargeable Rechargeable
Ni-Cd Alkaline Alkaline
1* Charge 1* Charge 2™ Charge
0 1.40 1.40 1.35
1 1.30 1.17 1.15
2 1.00 1.10 1.05
3 0.40 1.05 1.00
4 0.05 0.90 0.40

Table 4.1 Voltage and Elapsed Time for Rechargeable Batteries

The Lagrange interpolating polynomial for each type of battery is obtained
directly from the table. For the Ni-Cd battery, it is

(i‘—ﬁ}(f—fz](f—"a](f—h} 'V{f }+ (f—fu](f—.fz}{!'—!'3}{l'—!4}

Ji(t) = (o — 8, X(ts = £:)(ty — £, X2, =1,) (8, — 1 ), — 0, )8y — 8,0, _14}1‘)

(t,)




“ _fu}“ e fI)l:f 2 Ij){f _Id-}

(f—fa}(f—f;}'[f—fz]'[f—h]_

vty ) + -v(t,)
Uj _Iu}(‘tz _Il,}(‘fz 2z rj)“z _I-t] F (13 _rn}[ts = fl}(f?‘ _Iz ](Ij _‘!4] .
=L =4 = M=) (L) (4.7)
(f_‘ _Iu }I:f4 _'fl:'('f4 _Iz ]{r-i. _13)
1.0 = (¢ =Dt -2)t-3)t-4) Tl 3 He=2)t-3)t-4)
! (0-10-2)0-3)0-4) (1-0)1-2)(1-3)1-4)
q 1t = 1)1 —-3)1—4) 100 + =D -2)t-4)
2-0)2-1)(2-3)2-4) ~ (B-03-D(3-2)3-4)
2 e =1t =2)t -3 1 4.8)
(4-0)4-1)d-2)4-3) '
fil0) = S -2)0 -3 -4) - L e —2) (-3t - 4) + LB e —1)(r—3)1t - 4)
— B -t -2)(t —4)+ 4P 1 - 1) - 2)(t - 3) (4.9)

The same procedure is used to obtain the fourth order Lagrange interpolating
polynomials for the two alkaline batteries. Figure 4.1 shows the data points and the
fourth order interpolating polynomial for each battery.

It is generally advisable to begin with lower order polynomials for interpolation
and then increase the order in a systematic fashion until the results are acceptable. In
other words, a reduced subset of data points is chosen based on the expected range of the
interpolant. Suppose we have n+1 data points measured from a function f{x) where the
range of x is from X 10 Xy Assuming interpolation over the entire interval is required
with a single polynomial, we might choose a third or possibly fourth order polynomial
(assuming n>4) based on a judicious choice of four or five points that include both
extremes. Visual inspection of the polynomial and its relationship to the entire set of data
points will determine if a higher order polynomial is required and which additional data
point should be included.

When an additional data point is required, the higher order polynomial will
generally exhibit more curvature than the previous one throughout the interpolation
interval. For example, Figure 4.2 shows polynomials of order n =1, 2, 3, and 4 required
to pass through data sets of two, three, four, and five points respectively




£ Alkaline,
= 2™ Charge
==
o5}
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Figure 4.1 Fourth Order Interpolating Polynomials For Battery Data in Table 4.1

It's clear that the quadratic polynomial j3(x) exhibits more curvature than the
]mear function f(x) which of course has none. This is possible due to the presence of the
x* term in fa(x). Similarly f3(x) curves more than f3(x) due to the additional point [x3,
fx3)] and the fourth order term x* in fi(x) accounts for the added curvature compared to
J3(x) over the interval (0,4).

With an nth order interpolating polynomial in standard form, Equation (2.1), or
the Newton divided-difference form, Equation (3.1), there is only one high order term, i.e.
a single term with x". This is in contrast to the Lagrange form of the interpolating
polynomial, Equation (4.1), in which each term of the overall expression is an nth order
polynomial. If the order of the interpolating polynomial is to be increased from » to n+1
by including an additional data point, each Lagrange coefficient polynomial in Equation
(4.5) increases in order from n to nt+l as well. Consequently, the entire Lagrange
interpolating polynomial must be recomputed.

Despite the fact interpolating polynomials in standard form contain a single high

order term, an extra data point requires recalculation of all the coefficients a,, i = 0,1,2,

., 1 in addition to the new coefficient a,+;. The system of equations to be solved was

considered in Section 3.2 and enumerated in matrix form in Equation (2.3). The

Vandermonde matrix and the column vectors of coefficients and function values in
Equation (2.3) are (n+1) x (nt+1), nx 1, and nx 1, respectively.




The Newton divided-difference interpolating polynomial (of the three forms
considered) minimizes the computational effort necessary to accommodate an additional
data point. As we pointed out in Section 3.3, the Newton divided-difference interpolating
polynomial f,(x) in Equation (3.1) is formulated in such a way that the coefficients b;, i =
1,2,3,....,n do not change; only b, is calculated using the expanded table of finite divided
differences.

- 2

04

_1 L 1 1 i 1 Il ]

0 0.5 1 FLS 2 A5 3 38 4

Figure 4.2 Increasing Curvature of a Polynomial as a Function of its Order

As with any interpolation method based on the use of approximation functions,
there is an error term present which accounts for the difference between the true function
value (usually unknown) and the interpolated value. Using an nth order Lagrange
interpolating polynomial f,(x) to estimate values of f{x), the error term R,(x) satisfies

f(x)=f,(x)+R (x) (4.10)

which is identical to Equation (3.31) in Section 3 when f,(x) was an nth order Newton
divided-difference interpolating polynomial. Since f,(x) is unique for a given set of n+1
data points, much of the error analysis presented in Section 3 is applicable to Lagrange
interpolating polynomials. Thus, an estimate of the error R,(x) is still the difference
Jae1(x) - fu(x), where an additional data point is required to evaluate f,.i(x). The real




advantage of Newton divided-difference interpolating polynomials is the reduced
computational effort (compared with the Lagrange form) to obtain f,.1(x) when f,(x) is
already computed.

Example 4.2

In Example 4.1, estimate the error incurred by the use of a fourth order Lagrange
interpolating polynomial for approximating the voltage of a Ni-Cd battery after 1.5
hours. Assume an additional data point is available, namely ¢ = 2.5 hours, v = 0.7 volts.

From Equation (4.9),

fi(15) = (5-1)(15-2)(15-3)(15-4) - L2 15(15 - 2)(15 - 3)(1.5 - 4)
+ LR15(1.5-1)(1.5-3)(1.5-4) - 2401 5(1.5-1)(1.5-2)(1.5-4)

+ 051515 - 1)(15-2)(15-3)
fi(15) = 11965

Supplementing Table 4.1 with the new data point and determining the fifth order
Lagrange interpolating polynomial yields,

(=D =2 =30 =4)e=25) 0 M=) =3)e-4)-25) @.11)
(0-1(0-2)(0-30-4)0-25) (1-0)1-2)1-](1—-4)1-25)

1) =

-DE-3-4Nt-25) oo =1 -2(-4)-25)
(2-0)2-1}2-3)2-4)2-25) (3-0)03-1)(3-2)3-4)3-25)

tt = 1)t =2)¢ —3)(t - 2.5) 005+ (it =Dt = 2¥ =3t -4
(4-0)4-1)4-2)(4-3)4-25) (25-0)0(25-1)(25-2)(25-3)25-4)

Ry(1.5) is the difference between the true (unknown) function value f{1.5) and the
fourth order interpolating polynomial estimate f3(1.5), i.e.

JS(15) - £,(15)

R,(15)
We can estimate R4(1.5) using

R,(15)

I

f5(15) = £, (15)
12148 - 1.1965
0.0184
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A=[35 1L 0 00 00CO0O0O0C O

0 0 1225 35 1 0 0 0 0 6 0;

00 2500 50 1 0 00O O O; 3
0000250050100 0; Rood vodc 5‘;'\!-«?_ \nlﬁ..qa\m:\»,m\
0 00O 4225 65 1 0 0 0;
000COCD D0 4225 65 1;

0100000000 O0;

corFoMOoOoo

000O0O0O0O0 6400 BO 1;

4 =70 -1 00 ¢ O 0O O O;
0100 1 0 -100 -1 Q0 Q0 O O;
0000 1301 0 -130 -1 @;]

b=[92;92;173;173;295;295;42;464;:0;:0;0]

AInverse=inwv (A} ;
x=Alnverse*b;

wW=2 -

for me3:3:9
fprintf{'a(%1.0£f) = ',w}
a(w)=x(m);
disp(a{w)})
W=wW+1;

end

w=1;

for m=1:3:10
fprintf{'b(%1.0£f) = ', w)
b{w)=x(m) ;
disp(b(w))}
W=W+1;

end

w=l; .

for me2:3:11
fprintf{'c(%¥1.0£f) = ', w)
cl{w)=x(m);
dispic(w))
wW=wW+l;

and

Vli=linspace{20,35,300) ;
FVl=b (1) .*V1 +c{l};
plot(Vi,Fvli, 'k')

hold on
grid on

V1p=20;
FVlp=b(1l) .*Vip +c(1);
plot (Vip, Fvip, 'kp'}

V2=linspace(35,50,300) ;
FV2=a(2) .*(V2."2)+b (2) .*V2+c(2) ;
plot(V2,Fv2, 'k')

Va2p=35;
FV2p=a (2) .* (V2p."2) +b(2) . *V2p+c (2] ;
plot (Vv2p, FV2p, 'kp')

Vi=linepace(50,65,300) ;
FV3=a(3) . *{V3."2)+b(3) . *V3+c(3);
plot (V3,FV3, 'k')

V3p=50;
FV3p=a(3) .*(V3p."2) +b(3) . *V3p+c(3) ;
plot (Vip,FVip, 'kp')

V4=linspace(65,80,300) ;
Flda=a(4) . *(V4."2)+b(4) . *Va+c{4);
plot (V4 ,Fv4, 'k')




Vip=65;
FVdp=ai4).* (V4p."2)+b (4} .*Vap+c (4) ;
plot {(Vdp,Fvap, 'kp')

VEp=80;
FVSp=a (4) .* (V5p."2) +b(4) . *VSp+c (4) ;
plot (Vsp, FVsp, 'kp!')

xlabel {'Speed (V): mph')
ylabel ('Stopping Distance (D): ft')
title('Estimated Stopping Distances')




» myspline

A =

Columns I through &
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Columns 7 through 11

a2
a2
173
173
295
295
4z
464

al2) =
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bl1) =
biz)

B(3) =
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o
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35 1 0 0 0 0 0 0 0 0 0
0 0 1225 35 1 0 0 0 0 0 0
0 0 2500 50 1 0 0 0 0 0 0
0 0 0 0 0 2500 50 1 0 0 0
0 0 0 0 0 4225 65 1 0 0 0
0 0 0 0 0 0 0 0 4225 65 1
20 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 6400 80 1
1 0 -70 -1 0 0 0 0 0 0 0
0 0 100 1 0 -100 1 0 0 0 0
0 0 0 0 0 130 1 0 -130 1 0
92 a; =  0.0000
92 a= 01378
173 a;=  0.0444
173 a,=  0.1644
295 b;= 33333
295 b;= 63111
42 by = 3.0222
454 bs= -12.5778 fix) =
Ci= -24.6667 3.3333V - 24.6667 20<=V=<=35
c;= 144.1111 0.1378V2 - 6.3111V + 144.1111 35<=V<=50
C;= -§9.2222 0.0444V2 + 3.0222V - 89.2222 50 <=V <= 65
cy= 417.7778 0.1644V2 - 12,5788V + 417.7778 65 <=\ <= 80
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