Problem 1 (25 pts)

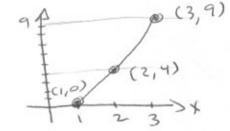
A spline fit through the points (1,0), (2,4), and (3,9) is required. Find the coefficients b1, c1, a2, b2, and c2 in the function

$$f(x) = b_1 x + c_1 a_2 x^2 + b_2 x + c_2$$

At
$$x=1$$
, $b_1+c_1=0$
 $x=3$, $9a_2+3b_2+c_2=9$

At
$$x = 2$$
, $2b_1 + c_1 = 4$
 $4a_2 + 2b_2 + c_2 = 4$

Slopes are 6 qual: b, = zaz(2)+bz



$$9a_2 + 3b_2 + c_2 = 9$$

 $4a_2 + 2b_2 + c_2 = 4$
 $4a_2 + b_2 = 4$

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 4 & 2 & 1 & 4 \\ 9 & 3 & 1 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{1}{4} & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & \frac{3}{4} & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{1}{4} & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & \frac{1}{4} & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 4 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 4 \end{pmatrix}$$

Ans. b = 4

C2 = 0

=)
$$\frac{1}{4}c_{2}=0$$
, $c_{2}=0$
 $b_{2}=0$
 $a_{2}=1$

Problem 2 (25 pts)

Find the equation of the Newton Divided Difference polynomial which passes through the points (-1,0), (0,2), (1,0) and (2,0). Assume $x_0=-1$, $x_1=0$, $x_2=1$, and $x_3=2$. Show that the polynomial reduces to the product of the three linear factors (x+1)(x-1)(x-2) since the roots are located at x=-1,1 and 2.

$$i \quad X_{i} \quad x_{i}(X_{i}) \quad A \quad A^{2} \quad A^{3}$$
 $0 \quad -1 \quad 0 \quad Z \quad -2 \quad 1$
 $1 \quad 0 \quad Z \quad -2 \quad 1$
 $2 \quad 1 \quad 0 \quad 0$
 $3 \quad 2 \quad 0$

$$\begin{aligned}
& \{[x_1, x_0] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{2 - 0}{0 - (-1)} \\
& \{[x_2, x_1] = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{0 - 2}{1 - 0} = -2 \\
& \{[x_3, x_2] = \frac{f(x_3) - f(x_2)}{x_3 - x_2} = \frac{0 - 0}{2 - 1} = 0
\end{aligned}$$

$$\begin{aligned}
& \{[x_2, x_1, x_0] = \frac{f(x_2, x_1] - f(x_1, x_0)}{x_3 - x_2} = \frac{-2 - 2}{1 - (-1)} = -2
\end{aligned}$$

$$\begin{aligned}
& \{[x_2, x_1, x_0] = \frac{f(x_2, x_1] - f(x_1, x_0)}{x_3 - x_1} = \frac{-2 - 2}{1 - (-1)} = -2
\end{aligned}$$

$$\begin{aligned}
& \{[x_3, x_2, x_1, x_0] = \frac{f(x_3, x_2, x_1) - f(x_2, x_1)}{x_3 - x_1} = \frac{0 - (-2)}{2 - (-1)} = 1
\end{aligned}$$

$$\begin{aligned}
& \{[x_3, x_2, x_1, x_0] = \frac{f(x_3, x_2, x_1) - f(x_2, x_1, x_0)}{x_3 - x_1} = \frac{1 - (-2)}{2 - (-1)} = 1
\end{aligned}$$

Ans.
$$f_3(x) = b_0 + b_1(x-x_0) + b_2(x-x_0)(x-x_1) + b_3(x-x_0)(x-x_1)(x-x_2)$$

$$= z(x+1) - z(x+1) + (x+1) + (x+1) + (x-1)$$

$$= (x+1) \left[z-z+x+x^2-x \right] = (x+1)(x^2-3x+2)$$

$$= (x+1)(x-1)(x-2)$$

Problem 3 (25 pts)

The exponential $f(x) = e^x$ is to be approximated by a linear function. Evaluate the exponential at x=0,1,2,3 and find the equation of the least squares line based on the four data points generated. Find SSE, SSR, SST and the coefficient of determination r^2 . Prepare a table to show how the coefficients of the normal equations were obtained. Prepare a second table to show how SSE, SSR, and SST were calculated.

×;	Υ;	X;	**.
0	1	0	0
1	2.718	1	7.718
2	7.389	4	14.778
3	20.086	9	60.258

X;	×;	(Y, - 7)2	4:	(4:-4:)2
0	١	46.213	-1.491	6.205
1	2.718	25.806	4.702	3.936
2	7.339	0.167	10.895	12.292
3	20.086	150.995	17.088	8.988

SSR = SST - SSE

$$r^2 = \frac{SSR}{SST} = \frac{191.760}{223.181} = 0.859$$

Ans. SSE = 31.421, SSR = 191.760, SST = 223.181, $r^2 = 0.859$

Problem 4 (25 pts)

Find the equation of the Lagrange interpolating polynomial through the points in the table below. Estimate the value of the function when x = 2.

Х	у
0	0
1	1
3	27
5	125

$$f_{3}(x) = \sum_{i=0}^{3} f_{i}(x) f(x^{i}) = f_{i}(x) + 27 f_{2}(x) + 125 f_{3}(x)$$

$$f_{3}(x) = \frac{x(x-1)(x-3)}{(1-0)(1-3)(1-5)} = \frac{x(x-1)(x-3)}{8}$$

$$f_{3}(x) = \frac{x(x-1)(x-3)}{(1-0)(1-3)(1-5)} = \frac{x(x-1)(x-3)}{8}$$

$$f_{3}(x) = \frac{x(x-1)(x-3)}{(1-0)(1-3)(1-5)} = \frac{x(x-1)(x-3)}{8}$$

$$f_3(z) = \frac{1}{8} \cdot 2(-1)(-3) - \frac{12}{2} \cdot 2(1)(-3) + \frac{25}{8} \cdot 2(1)(-1)$$

$$= \frac{6}{8} + \frac{27}{2} - \frac{25}{4} = 8$$

Ans.
$$f_3(x) = \frac{1}{8} x(x-3)(x-5) - \frac{20}{12}x(x-1)(x-5) + \frac{25}{8} x(x-1)(x-3)$$

 $f_3(z) = 8$

Su	94	
EG	N	3420

-			-
11.7	WO	1777	7
III.	жи	ш	- 4

N.T.		
Name		

Problem 2 (25 pts)

Find the equation of the Newton Divided Difference polynomial which passes through the points (-1,0), (0,2), (1,0) and (2,0). Assume $x_0=-1$, $x_1=0$, $x_2=1$, and $x_3=2$. Show that the polynomial reduces to the product of the three linear factors (x+1)(x-1)(x-2) since the roots are located at x=-1,1 and 2.

Su	94		
EG	N	342	0

Exam 2

Name		

Problem 3 (25 pts)

The exponential $f(x) = e^x$ is to be approximated by a linear function. Evaluate the exponential at x=0,1,2,3 and find the equation of the least squares line based on the four data points generated. Find SSE, SSR, SST and the coefficient of determination r^2 . Prepare a table to show how the coefficients of the normal equations were obtained. Prepare a second table to show how SSE, SSR, and SST were calculated. Use three places after the decimal point in <u>all</u> intermediate calculations.

Su	94		
EG	N	342	0

Exam 2

Mana	
Name	

Problem 4 (25 pts)

Find the equation of the Lagrange interpolating polynomial through the points in the table below. Estimate the value of the function when x=2.

Х	у
0	0
1	1
3	27
5	125

.....

Ans. $f_3(x) =$

 $f_3(2) =$