Problem 1 (30 pts)

A continuous integrator with initial condition $x(0) = 1$ is shown below.

\[x(0) = 1 \]

\[u(t) = e^{-2t} \]

\[\int \rightarrow x(t) \]

Fill in the table below where $x(t_n)$ is the exact value of the integrator output at time t_n. Choose $T = 0.05$ for each integrator. Round all answers to 4 places after the decimal point.

<table>
<thead>
<tr>
<th>n</th>
<th>$t_n = nT$</th>
<th>$x_A(n)$ Explicit Euler</th>
<th>$x_A(n)$ Trapezoidal</th>
<th>$x(t_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A second order system is modeled by the differential equation
\[
\frac{d^2 w}{dt^2} + \frac{dw}{dt} + 2w = 3\frac{d^2 u}{dt^2}.
\]

The initial conditions \(w(0) = \frac{dw}{dt}(0) = 0 \).

a) Draw a simulation diagram for the system.

b) Find matrices \(A, B, C, D \) in the state variable model form
\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx + Du
\end{align*}
\]

The single output is \(y = w \).

c) The input \(u(t) = t, \ t \geq 0 \). Use explicit Euler integration with step size \(T = 0.1 \) to find \(y_A(1), y_A(2) \) and \(y_A(3) \). Round answers to 4 places after the decimal point.

Hint: First find
\[
\begin{bmatrix}
x_{1,A}(1) \\
x_{2,A}(1)
\end{bmatrix}, \begin{bmatrix}
x_{1,A}(2) \\
x_{2,A}(2)
\end{bmatrix}, \begin{bmatrix}
x_{1,A}(3) \\
x_{2,A}(3)
\end{bmatrix}
\]
Problem 3 (35 pts)

An exponential population growth model

\[\frac{dP}{dt} = -kP, \ (k > 0) \]

is to be simulated in order to approximate the population \(P(t) \) for a period of time. The difference equation for \(P_A(n) \) intended to approximate \(P(t) \) is

\[P_A(n+1) + \alpha P_A(n) = 0 \]

a) Find an expression for \(\alpha \) in terms of \(k \) and the step size \(T \) using
 i) Explicit Euler
 ii) Implicit Euler

b) Evaluate \(\alpha \) for each integrator when \(k = 0.1 \) and \(T = 1 \) yr. Round answers to 4 places after the decimal point.

c) Fill in the Table below when \(P(0) = 5 \) million. Round all answers in millions to 4 places after the decimal point.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(t_n = nT)</th>
<th>(P_A(n),) Explicit Euler</th>
<th>(P_A(n),) Implicit Euler</th>
<th>(P(t_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5.0000</td>
<td>5.0000</td>
<td>5.0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d) The exact solution is given by \(P(t) = P(0)e^{-kt}, \ t \geq 0 \). Fill in the last column of the table.