Problem 1 (30 pts)
A continuous integrator with initial condition is shown below.

\[u(t) = e^{-2t} \]

\[x(0) = 1 \]

\[x(t) \]

Fill in the table below. Choose \(T = 0.05 \) for each integrator. Round all answers to 4 places after the decimal point.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_i(n)) Explicit Euler</th>
<th>(x_i(n)) Trapezoidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem 2 (35 pts)

A second order system is modeled by the differential equation

\[\frac{d^2w}{dt^2} + \frac{dw}{dt} + 2w = \frac{d^2u}{dt^2}. \]

The initial conditions \(w(0) = \frac{dw}{dt}(0) = 0. \)

a) Draw a simulation diagram for the system.

b) Find matrices \(A, B, C, D \) in the state variable model form

\[\dot{x} = Ax + Bu \\
\]

\[y = Cx + Du \]

The single output is \(y = w. \)

c) The input \(u(t) = t, \ t \geq 0. \) Use explicit Euler integration with step size \(T = 0.1 \) to find \(y_d(1), y_d(2) \) and \(y_d(3). \) Round answers to 4 places after the decimal point.

Hint: First find \(x_d(1), x_d(2) \) and \(x_d(3). \)
Problem 3 (35 pts)

An exponential population growth model

\[\frac{dP}{dt} = -kP, \quad (k > 0) \]

is to be simulated in order to approximate the population \(P(t) \) for a period of time. The difference equation for \(P_A(n) \) intended to approximate \(P(t) \) is

\[P_A(n+1) + \alpha P_A(n) = 0 \]

a) Find an expression for \(\alpha \) in terms of \(k \) and the step size \(T \) using
 i) Implicit Euler
 ii) Trapezoidal
 iii) Improved Euler

b) Evaluate \(\alpha \) for each integrator and round answers to 6 places after decimal point.

c) Fill in the Table comparing the three numerical integrators and the exact solution. \(P(0) = 5 \) million and \(T = 2 \) yr. Round all answers in millions to 6 places after the decimal point. For the exact, enter \(P(T) \) and \(P(2T) \).

<table>
<thead>
<tr>
<th></th>
<th>(P_A(0))</th>
<th>(P_A(1))</th>
<th>(P_A(2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit Euler</td>
<td>5.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trapezoidal</td>
<td>5.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved Euler</td>
<td>5.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact</td>
<td>5.000000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>