A single tank with cross-sectional area \(A \) \(\text{ft}^2 \) receives an inflow of \(f_1(t) \) in \(\text{ft}^3/\text{min} \) at a temperature of \(T_1(t) \), measured in deg F. Outflow \(f_0(t) \) is in \(\text{ft}^3/\text{min} \) and at temperature \(T(t) \), in deg F. The liquid level and temperature in the tank at time \(t \) is \(H(t) \) and \(T(t) \), respectively.

The tank is modeled by the following differential and algebraic equations:

\[
A \frac{dH}{dt} + f_0 = f_1
\]

\[
f_0 = \alpha H^{1/2}
\]

\[
c f_1 T_1 - c f_0 T = c \frac{d}{dt}(AHT)
\]

The last equation reflects a conservation of energy, i.e.

Rate of energy in \(\rightarrow \) rate of energy leaving \(\rightarrow \) rate of accumulation of energy

where \(c \) is the specific heat of the liquid measured in \(\text{Btu} / \text{degF} \) per \(\text{ft}^3 \).

\[
\frac{Btu}{\text{ft}^3 - \text{degF}} \cdot \frac{\text{ft}^3}{\text{min}} \cdot \frac{\text{degF}}{\text{min}} = \frac{Btu}{\text{ft}^3 - \text{degF}} \cdot \frac{\text{ft}^3}{\text{min}} \cdot \frac{\text{degF}}{\text{min}} = \frac{Btu}{\text{min}} \cdot \frac{1}{\text{min}} \cdot \left(\frac{\text{ft}^2 \cdot \text{ft} \cdot \text{degF}}{\text{min}} \right)
\]

\[
\frac{Btu}{\text{min}} - \frac{Btu}{\text{min}} = \frac{Btu}{\text{min}}
\]

The right hand side of the last equation is expanded to

\[
c f_1 T_1 - c f_0 T = c A \frac{d}{dt}(HT) = c A \left(H \frac{dT}{dt} + T \frac{dH}{dt} \right)
\]
After solving for $\frac{dT}{dt}$ in the last equation, the Simulink diagram is obtained as shown.

% class_demo_3A.m
% example of a tank with two inputs, flow and temperature
clc, close all, clear all
A=10; % tank area
F1=12; % amplitude of step flow in
alpha=4; % discharge flow constant
H_init=10;
T_init=70;
delta_T=50; % change in temp step flow in above T_init
step_size=0.025; % RK-4 integration step size
tfinal=500;
estop=0.01; % stop condition for |dH/dt| and |dT/dt|
sim('class_demo_3A')
t=t_H(:,1);
H=t_H(:,2);
T=t_T(:,2);
subplot(2,1,1)
plot(t,H)
ylabel('H (ft)')
title('H vs t')
subplot(2,1,2)
plot(t,T)
xlabel('t (min)')
ylabel('T (deg F)')
title('T vs t')