Assignment 2

9.1 Assume the op-amps in Figure P9.1 are ideal. Find the voltage gain $A_{v}=v_{O} / v_{I}$ and the input resistance R_{i} of each circuit.
9.2 Consider an ideal inverting op-amp with $R_{2}=100 \mathrm{k} \Omega$ and $R_{1}=10 \mathrm{k} \Omega$. (a) Determine the ideal voltage gain and input resistance R_{i}. (b) Repeat part (a) for a second $100 \mathrm{k} \Omega$ resistor connected in parallel with R_{2}. (c) Repeat part (a) for a second $10 \mathrm{k} \Omega$ resistance connected in series with R_{1}.

D9.3 Design an inverting op-amp circuit with a voltage gain of $A_{v}=v_{O} / v_{I}=-12$ and an input resistance of $R_{i}=25 \mathrm{k} \Omega$.

Figure P9.1
D9.4 Design an inverting op-amp circuit with a voltage gain of $A_{v}=v_{O} / v_{I}=-8$. When the input voltage is $v_{I}=-1 \mathrm{~V}$, the maximum current in R_{1} and R_{2} must be no larger than $15 \mu \mathrm{~A}$. Determine the minimum values of R_{1} and R_{2}.
9.29 Determine v_{O} as a function of $v_{I 1}$ and $v_{I 2}$ for the ideal noninverting op-amp circuit in Figure P9.29.
9.30 Consider the ideal noninverting op-amp in Figure P9.30. Determine v_{O} as a function of $v_{I 1}$ and $v_{I 2}$.

Figure P9.30

Figure P9.31
9.31 Determine the gain $A_{v}=v_{O} / v_{I}$ for the ideal op-amp circuit in Figure P9.31.
9.34 Consider the ideal op-amp circuit shown in Figure P9.34. Determine the voltage gains $A_{v 1}=v_{O 1} / v_{I}$ and $A_{v 2}=v_{O 2} / v_{I}$. What is the relationship between $v_{O 1}$ and $v_{O 2}$?

Figure P9.34
9.36 The input voltage is $v_{I}=6 \mathrm{~V}$ for each ideal op-amp circuit shown in Figure P9.36. Determine each output voltage.

Figure P9.36

