Assignment 2

- **9.1** Assume the op-amps in Figure P9.1 are ideal. Find the voltage gain $A_v = v_O/v_I$ and the input resistance R_i of each circuit.
- **9.2** Consider an ideal inverting op-amp with $R_2 = 100 \,\mathrm{k}\Omega$ and $R_1 = 10 \,\mathrm{k}\Omega$. (a) Determine the ideal voltage gain and input resistance R_i . (b) Repeat part (a) for a second $100 \,\mathrm{k}\Omega$ resistor connected in parallel with R_2 . (c) Repeat part (a) for a second $10 \,\mathrm{k}\Omega$ resistance connected in series with R_1 .
- **D9.3** Design an inverting op-amp circuit with a voltage gain of $A_v = v_O/v_I = -12$ and an input resistance of $R_i = 25 \,\mathrm{k}\Omega$.

D9.4 Design an inverting op-amp circuit with a voltage gain of $A_v = v_O/v_I = -8$. When the input voltage is $v_I = -1$ V, the maximum current in R_1 and R_2 must be no larger than 15 μ A. Determine the minimum values of R_1 and R_2 .

- **9.29** Determine v_O as a function of v_{I1} and v_{I2} for the ideal noninverting op-amp circuit in Figure P9.29.
- **9.30** Consider the ideal noninverting op-amp in Figure P9.30. Determine v_O as a function of v_{I1} and v_{I2} .

- **9.31** Determine the gain $A_v = v_O/v_I$ for the ideal op-amp circuit in Figure P9.31.
- **9.34** Consider the ideal op-amp circuit shown in Figure P9.34. Determine the voltage gains $A_{v1} = v_{O1}/v_I$ and $A_{v2} = v_{O2}/v_I$. What is the relationship between v_{O1} and v_{O2} ?

9.36 The input voltage is $v_I = 6$ V for each ideal op-amp circuit shown in Figure P9.36. Determine each output voltage.

