Generally useful information.

- The notation $z = <x,y>$ denotes the pairing function with inverses $x = <z>_1$ and $y = <z>_2$.

- The minimization notation $\mu y [P(\ldots,y)]$ means the least y (starting at 0) such that $P(\ldots,y)$ is true. The bounded minimization (acceptable in primitive recursive functions) notation $\mu y (u \leq y \leq v) [P(\ldots,y)]$ means the least y (starting at u and ending at v) such that $P(\ldots,y)$ is true. Unlike the text, I find it convenient to define $\mu y (u \leq y \leq v) [P(\ldots,y)]$ to be $v+1$, when no y satisfies this bounded minimization.

- The tilde symbol, \sim, means the complement. Thus, set $\sim S$ is the set complement of set S, and predicate $\sim P(x)$ is the logical complement of predicate $P(x)$.

- A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, $P(x)$ means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and false is 0 in formulas like $y \cdot P(x)$, which would evaluate to either y (if $P(x)$) or 0 (if $\sim P(x)$).

- A set S is recursive if S has a total recursive characteristic function χ_S, such that $x \in S \iff \chi_S(x)$. Note χ_S is a predicate. Thus, it evaluates to 0 (false), if $x \notin S$.

- When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:
 1. S is either empty or the range of a total recursive function f_S.
 2. S is the domain of a partial recursive function g_S.

- If I say a function g is partially computable, then there is an index g (I know that’s overloading, but that’s okay as long as we understand each other), such that $\Phi_g(x) = \Phi(x, g) = g(x)$. Here Φ is a universal partially recursive function.

 Moreover, there is a primitive recursive function STP, such that $\text{STP}(g, x, t)$ is 1 (true), just in case g, started on x, halts in t or fewer steps.

 $\text{STP}(g, x, t)$ is 0 (false), otherwise.

 Finally, there is another primitive recursive function VALUE, such that $\text{VALUE}(g, x, t)$ is $g(x)$, whenever $\text{STP}(g, x, t)$.

 $\text{VALUE}(g, x, t)$ is defined but meaningless if $\sim \text{STP}(g, x, t)$.

- The notation $f(x)_\downarrow$ means that f converges when computing with input x, but we don’t care about the value produced. In effect, this just means that x is in the domain of f.

- The notation $f(x)_\uparrow$ means f diverges when computing with input x. In effect, this just means that x is not in the domain of f.

- The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure f and input x, whether or not $f(x)_\downarrow$. The set of all such pairs, K_0, is a classic re non-recursive one.

- The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f, whether or not f is an algorithm (halts on all input). The set of all such function indices is a classic non re one.

- $A \leq_m B$ (A many-one reduces to B) means that there exists a total recursive function f such that $x \in A \iff f(x) \in B$. If $A \leq_m B$ and $B \leq_m A$ then we say that $A \equiv_m B$ (A is many-one equivalent to B). If the reducing function is 1-1, then we say $A \leq_1 B$ (A one-one reduces to B) and $A \equiv_1 B$ (A is one-one equivalent to B).
1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

 a.) \{ f | \text{domain}(f) \text{ is finite} \}

 Justification: \exists x \forall y \geq x \forall t \sim \text{STP}(f, y, t)

 \hfill \text{NRNC}

 b.) \{ f | \text{domain}(f) \text{ is empty} \}

 Justification: \forall x \forall t \sim \text{STP}(f, x, t)

 \hfill \text{CO}

 c.) \{ <f,x> | f(x) \text{ converges in at most 20 steps} \}

 Justification: \text{STP}(f, x, 20)

 \hfill \text{REC}

 d.) \{ f | \text{domain}(f) \text{ converges in at most 20 steps for some input } x \}

 Justification: \exists x \text{STP}(f, x, 20)

 \hfill \text{RE}

2. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by listing all possible categories. No justification is required.

 a.) D = \sim C \hfill \text{RE, NR}

 b.) D \subseteq A \cup C \hfill \text{REC, RE, NR}

 c.) D = \sim B \hfill \text{NR}

 d.) D = B \sim A \hfill \text{REC, RE}

3. Prove that the Halting Problem (the set \text{HALT} = K_0 = L_u) is not recursive (decidable) within any formal model of computation. (Hint: A diagonalization proof is required here.)

 Look at notes.

4. Using reduction from the known undecidable HasZero, HZ = \{ f | \exists x f(x) = 0 \}, show the non-recursiveness (undecidability) of the problem to decide if an arbitrary partial recursive function g has the property IsZero, Z = \{ f | \forall x f(x) = 0 \}. Hint: there is a very simple construction that uses STP to do this. Just giving that construction is not sufficient; you must also explain why it satisfies the desired properties of the reduction.

 HZ = \{ f | \exists x \exists t \exists f \text{STP}(f, x, t) \& \text{VALUE}(f, x, t) == 0 \}

 Let f be the index of an arbitrary effective procedure.

 Define g_f(y) = 1 - \exists x \exists t \exists f \text{STP}(f, x, t) \& \text{VALUE}(f, x, t) == 0

 If \exists x f(x) = 0, we will find the x and the run-time t, and so we will return 0 (1 - 1)

 If \forall x f(x) \neq 0, then we will diverge in the search process and never return a value.

 Thus, f \in HZ if g_f \in Z.
5. Define \(\text{RANGE}_\text{ALL} = \{ f | \text{range}(f) = \mathbb{R} \} \).

a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

\[\forall x \exists <y, t> [\text{STP}(f, y, t) \land \text{Value}(f, y, t) = x] \]

b.) Use Rice’s Theorem to prove that \(\text{RANGE}_\text{ALL} \) is undecidable.

This is non-trivial as \(I(x) = x \in \text{RANGE}_\text{ALL} \) and \(C_0(x) = 0 \notin \text{RANGE}_\text{ALL} \)

Let \(f, g \) be such that \(\forall x \varphi_f(x) = \varphi_g(x) \).

\[f \in \text{RANGE}_\text{ALL} \iff \text{range}(f) = \mathbb{R} \]

\[\iff \text{range}(g) = \mathbb{R} \] since \(g \) outputs the same value as \(f \) for any input

\[\iff g \in \text{RANGE}_\text{ALL} \]

Since the property is non-trivial and is an I/O property, Rice’s Theorem says it is undecidable.

c.) Show that \(\text{TOTAL} \leq_m \text{RANGE}_\text{ALL} \), where \(\text{TOTAL} = \{ f | \forall y \varphi_f(y) \downarrow \} \).

Let \(f \) be the index of an arbitrary effective procedure \(\varphi_f \). Define \(g \) such that \(g(f) \), denoted \(g_f \), is the index of the function \(\varphi_{g_f} \) defined by \(\varphi_{g_f}(x) = \varphi_f(x) - \varphi_f(x) + x \).

\[f \in \text{TOTAL} \iff \forall x \varphi_f(x) \downarrow \iff \forall x \varphi_{g_f}(x) = x \iff \forall x x \in \text{range}(g_f) \Rightarrow g_f \in \text{RANGE}_\text{ALL} \]

\[f \notin \text{TOTAL} \iff \exists x \varphi_f(x) \uparrow \iff \exists x \varphi_{g_f}(x) \uparrow \iff \exists x x \notin \text{range}(g_f) \Rightarrow g_f \notin \text{RANGE}_\text{ALL} \]

This shows that \(\text{TOTAL} \leq_m \text{RANGE}_\text{ALL} \), as was desired.

d.) Show that \(\text{RANGE}_\text{ALL} \leq_m \text{TOTAL} \).

Let \(f \) be the index of an arbitrary effective procedure \(\varphi_f \). Define \(g \) such that \(g(f) \), denoted \(g_f \), is the index of the function \(\varphi_{g_f} \) defined by \(\varphi_{g_f}(x) = \exists <y, t> [\text{STP}(f, y, t) \land \text{Value}(f, y, t) = x] \).

\[f \in \text{RANGE}_\text{ALL} \iff \forall x \exists <y, t> [\text{STP}(f, y, t) \land \text{Value}(f, y, t) = x] \iff \forall x \varphi_{g_f}(x) \downarrow \iff g_f \in \text{TOTAL} \]

This shows that \(\text{RANGE}_\text{ALL} \leq_m \text{TOTAL} \), as was desired.

e.) From a.) through d.) what can you conclude about the complexity of \(\text{RANGE}_\text{ALL} \)?

a) shows that \(\text{RANGE}_\text{ALL} \) is no more complex than others that must use the alternating qualifiers \(\forall \exists \). b) shows the problem is non-recursive. c) and d) combine to show that the problem is in fact of equal complexity with the non-re problem \(\text{TOTAL} \), so the result in a) was optimal.
6. This is a simple question concerning Rice’s Theorem.
 a.) State the strong form of Rice’s Theorem. Be sure to cover all conditions for it to apply.

 Let P be a property of indices of partial recursive function such that the set
 $S_P = \{ f \mid f \text{ has property } P \}$ has the following two restrictions
 (1) S_P is non-trivial. This means that S_P is neither empty nor is it the set of all indices.
 (2) P is an I/O behavior. That is, if f and g are two partial recursive functions whose I/O
 behaviors are indistinguishable, $\forall x \ f(x)=g(x)$, then either both of f and g have property P
 or neither has property P.
 Then P is undecidable.

 b.) Describe a set of partial recursive functions whose membership cannot be shown undecidable
 through Rice’s Theorem. What condition is violated by your example?
 There are many possibilities here. For example $\{ f \mid \exists x \sim \text{STP}(f,x,x) \}$ is not an I/O property and
 $\{ f \mid \exists x f(x) \neq f(x) \}$ is trivial (empty).

7. Using the definition that S is recursively enumerable iff S is either empty or the range of some
 algorithm f_S (total recursive function), prove that if both S and its complement $\sim S$ are recursively
 enumerable then S is decidable. To get full credit, you must show the characteristic function for S,
 χ_S, in all cases. Be careful to handle the extreme cases (there are two of them). Hint: This is not an
 empty suggestion.

 Let $S = \emptyset$ then $\sim S = \aleph$. Both are re and $\forall x \chi_S(x) = 0$ is S’s characteristic function.

 Let $S = \aleph$ then $\sim S = \emptyset$. Both are re and $\forall x \chi_S(x) = 1$ is S’s characteristic function.

 Assume then that $S \neq \emptyset$ and $S \neq \aleph$ then each of S and $\sim S$ is enumerated by some total recursive
 function. Let S be enumerated by f_S and $\sim S$ by $f_{\sim S}$. Define
 $\chi_S(x) = f_S(\mu y [f_S(y)==x \parallel f_{\sim S}(y)==x]) == x$.

 Moreover, the minimization, while conceptually unbounded, always converges because both f_S
 and by $f_{\sim S}$ are algorithms.

 Further, x must be in the range of one and only one of f_S or $f_{\sim S}$. Thus,
 $\exists y f_S(y) == x$ or $\exists y f_{\sim S}(y) == x$.

 The min operator (μy) finds the smallest such y and the predicate
 $f_S(\mu y [f_S(y)==x \parallel f_{\sim S}(y)==x]) == x$ checks that x is in the range of f_S.

 If it is, then $\chi_S(x) = 1$ else $\chi_S(x) = 0$, as desired.