1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by listing all possible categories. No justification is required.

a.) $D = \sim C$ \hspace{2cm} RE, NR

b.) $D \subseteq (A \cup C)$ \hspace{2cm} REC, RE, NR

c.) $D = \sim B$ \hspace{2cm} NR

d.) $D = B - A$ \hspace{2cm} REC, RE

2. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the following decision problems. No proofs are required.

<table>
<thead>
<tr>
<th>Problem / Language Class</th>
<th>Regular</th>
<th>Context Free</th>
<th>Context Sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L = \Sigma^*$?</td>
<td>D</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>$L = \emptyset$?</td>
<td>D</td>
<td>D</td>
<td>U</td>
</tr>
<tr>
<td>$L = L^2$?</td>
<td>D</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>$x \in L^2$, for arbitrary x ?</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

3. Use PCP to show the undecidability of the problem to determine if the intersection of two context free languages is non-empty. That is, show how to create two grammars G_A and G_B based on some instance $P = \langle x_1, x_2, \ldots, x_n, \langle y_1, y_2, \ldots, y_n \rangle \rangle$ of PCP, such that $L(G_A) \cap L(G_B) \neq \emptyset$ iff P has a solution. Assume that P is over the alphabet Σ. You should discuss what languages your grammars produce and why this is relevant, but no formal proof is required.

$G_A = (\{ A \} , \Sigma \cup \{ [i] \mid 1 \leq i \leq n \} , A , P_A)$ \hspace{2cm} $G_B = (\{ B \} , \Sigma \cup \{ [i] \mid 1 \leq i \leq n \} , B , P_B)$

$P_A : A \rightarrow x_i A [i] \mid x_i [i]$ \hspace{2cm} $P_B : A \rightarrow y_i B [i] \mid y_i [i]$

$L(G_A) = \{ x_{i_1} \ldots x_{i_p} [i_p] \ldots [i_2] [i_1] \mid p \geq 1, 1 \leq i_t \leq n, 1 \leq t \leq p \}$

$L(G_B) = \{ y_{j_1} y_{j_2} \ldots y_{j_q} [j_q] \ldots [j_2] [j_1] \mid q \geq 1, 1 \leq j_u \leq n, 1 \leq u \leq q \}$

$L(G_A) \cap L(G_B) = \{ w [k_r] \ldots [k_2] [k_1] \mid r \geq 1, 1 \leq k_t \leq n, 1 \leq v \leq r \}$, where

$w = x_{k_1} x_{k_2} \ldots x_{k_r} = y_{k_1} y_{k_2} \ldots y_{k_r}$

If $L(G_A) \cap L(G_B) \neq \emptyset$ then such a w exists and thus k_1, k_2, \ldots, k_r is a solution to this instance of PCP. This shows that a decision procedure for the non-emptiness of the intersection of CFLs implies a decision procedure for PCP, which we have already shown is undecidable. Hence, the non-emptiness of the intersection of CFLs is undecidable. Q.E.D.
4. Consider the set of indices \(\text{CONSTANT} = \{ f \mid \exists K \forall y \ [\varphi_f(y) = K] \} \). Use Rice’s Theorem to show that \(\text{CONSTANT} \) is not recursive. Hint: There are two properties that must be demonstrated.

First, show \(\text{CONSTANT} \) is non-trivial.

- \(Z(x) = 0 \), which can be implemented as the TM \(R \), is in \(\text{CONSTANT} \)
- \(S(x) = x+1 \), which can be implemented by the TM \(C_1 R \), is not in \(\text{CONSTANT} \)

Thus, \(\text{CONSTANT} \) is non-trivial

Second, let \(f, g \) be two arbitrary computable functions with the same I/O behavior.

That is, \(\forall x, \) if \(f(x) \) is defined, then \(f(x) = g(x) \); otherwise both diverge, i.e., \(f(x) \uparrow \) and \(g(x) \uparrow \)

Now, \(f \in \text{CONSTANT} \iff \exists K \forall x \ [f(x) = K] \) by definition of \(\text{CONSTANT} \)

- \(\Rightarrow \exists K \forall x \ [f(x) = K] \) by definition of \(\text{CONSTANT} \)
- \(\Rightarrow \forall x \ [g(x) = C] \) where \(C \) is the instance of \(K \) above, since \(\forall x \ [f(x) = g(x)] \)
- \(\Rightarrow \exists K \forall x \ [g(x) = K] \) from above
- \(\Rightarrow g \in \text{CONSTANT} \) by definition of \(\text{CONSTANT} \)

Since \(\text{CONSTANT} \) meets both conditions of Rice’s Theorem, it is undecidable. Q.E.D.

5. Show that \(\text{CONSTANT} \equiv_m \text{TOT} \), where \(\text{TOT} = \{ f \mid \forall y \varphi_f(y) \downarrow \} \).

\(\text{CONSTANT} \leq_m \text{TOT} \)

Let \(f \) be an arbitrary effective procedure.

Define \(g_f \) by

- \(g_f(0) = f(0) \)
- \(g_f(y+1) = f(y+1) + \mu z \ [f(y+1) = f(y)] \)

Now, if \(f \in \text{CONSTANT} \) then \(\forall y \ [f(y) \downarrow \] \) and \(f(y+1) = f(y) \) \].

Under this circumstance, \(\mu z \ [f(y+1) = f(y)] \) is 0 for all \(y \) and \(g_f(y) = f(y) \) for all \(y \).

Clearly, then \(g_f \in \text{TOT} \)

If, however, \(f \notin \text{CONSTANT} \) then \(\exists y \ [f(y+1) \neq f(y)] \) and thus \(\exists y \ g_f(y) \uparrow \).

Choose the least \(y \) meeting this condition.

If \(f(y) \uparrow \) then \(g_f(y) \uparrow \) since \(f(y) \) is in \(g_f(y) \)'s definition (the 1st term).

If \(f(y) \downarrow \) but \(f(y+1) \neq f(y) \) then \(g_f(y) \uparrow \) since \(\mu z \ [f(y+1) = f(y)] \) \uparrow \) (the 2nd term).

Clearly, then \(g_f \notin \text{TOT} \)

Combining these, \(f \in \text{CONSTANT} \iff g_f \in \text{TOT} \) and thus \(\text{CONSTANT} \leq_m \text{TOT} \)

\(\text{TOT} \leq_m \text{CONSTANT} \)

Let \(f \) be an arbitrary effective procedure.

Define \(g_f \) by

- \(g_f(y) = f(y) - f(y) \)

Now, if \(f \in \text{TOT} \) then \(\forall y \ [f(y) \downarrow \] \) and thus \(\forall y \ g_f(y) = 0 \). Clearly, then \(g_f \in \text{CONSTANT} \)

If, however, \(f \notin \text{TOT} \) then \(\exists y \ [f(y) \uparrow \] \) and thus \(\exists y \ [g_f(y) \uparrow \]. Clearly , then \(g_f \notin \text{CONSTANT} \)

Combining these, \(f \in \text{TOT} \iff g_f \in \text{CONSTANT} \) and thus \(\text{TOT} \leq_m \text{CONSTANT} \)

Hence, \(\text{CONSTANT} \equiv_m \text{TOT} \). Q.E.D.
6. Why does Rice’s Theorem have nothing to say about the following? Explain by showing some condition of Rice’s Theorem that is not met by the stated property.

**AT-LEAST-LINEAR = \{ f | \forall y \varphi_f(y) \text{ converges in no fewer than } y \text{ steps } \}.

We can deny the 2nd condition of Rice’s Theorem since

Z, where Z(x) = 0, implemented by the TM R converges in one step no matter what x is and hence is not in AT-LEAST-LINEAR

Z', defined by the TM \(R \# \), is in AT-LEAST-LINEAR

However, \(\forall y \ [Z(x) = Z'(x)] \), so they have the same I/O behavior and yet one is in and the other is out of AT-LEAST-LINEAR, denying the 2nd condition of Rice’s Theorem

7. The trace language of a computational device like a Turing Machine is a language of the form

Trace = \{ C_1\#C_2\# \ldots \# C_n \ # | C_i \Rightarrow C_{i+1}, 1 \leq i < n \}

Trace is Context Sensitive, non-Context Free. Actually, a trace language typically has every other configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is Context Free. Explain what makes its complement a CFL. In other words, describe the characteristics of this complement and why these characteristics are amenable to a CFG description.

The complement of a trace needs to include strings that either do not look like a trace (that’s easy) or look like one, but have one or more errors. By one or more errors, we just mean that there is a pair \(C_j\#C_{j+1}\# \) where it is not the case that \(C_j \Rightarrow C_{j+1} \). A PDA can guess which configuration starts this pair, push that configuration into its stack and check that the next one is in error (of course, this generally means one element of the pair is reversed). Such checking is within the capabilities of a PDA.

8. We demonstrated a proof that the context sensitive languages are not closed under homomorphism, To start, we assumed \(G = (N, \Sigma, S, P) \) is an arbitrary Phrase Structured Grammar, with \(N \) its set of non-terminals, \(\Sigma \) its terminal alphabet, \(S \) its starting non-terminal and \(P \) its productions (rules). Since \(G \) is a PSG, it can have length increasing, length preserving and length decreasing rules. We wished to convert \(G \) to a CSG, \(G' = (N', \Sigma', S', P') \) where there are no rules that are length decreasing (since a CSG cannot have these). We developed a way to pad the length decreasing rules from \(G \) and then a homomorphism that gets rid of these padding characters. Define \(G' \) and the homomorphism \(h \) that we discussed in class and then briefly discuss why this new grammar and homomorphism combine so \(h(L(G')) = L(G) \), thereby showing that all re sets are the homomorphic images of CSLs.

Define \(N' = N \cup \{ S', D \} \), where \(D \) and \(S' \) are new symbols;

\(\Sigma' = \Sigma \cup \{ \$ \} \), where \$ is a new symbol;

\(P' \) contains

\[S' \rightarrow SS \text{ is in } P' \]

\[\text{If } \alpha \rightarrow \beta \text{ is in } P \text{ and } |\alpha| \leq |\beta|, \text{ then } \alpha \rightarrow \beta \text{ is in } P' \]

\[\text{If } \alpha \rightarrow \beta \text{ is in } P \text{ and } |\alpha| > |\beta|, \text{ then } \alpha \rightarrow \beta D^k \text{ is in } P', \text{ where } k = |\alpha| - |\beta| \]

\[Dx \rightarrowxD \text{ is in } P', \text{ for all } x \in N \cup \Sigma \]

\[D\$ \rightarrow D\$ \text{ is in } P' \]

It is clear that these rules are all length increasing or length preserving and hence \(G' \) is a CSG.

L(G') = \{ w\$^j | w \in L(G) \text{ and } j \text{ is some integer } > 0 \}

Define the homomorphism \(h \) by

\[h(a) = a \text{ for all } a \in \Sigma \]

\[h($) = \lambda \text{ (the string of length } 0) \]

\[h(L(G')) = \{ w | w \in L(G) \} = L(G) \]

This completes our constructive justification.