The notation $z = \langle x, y \rangle$ denotes the pairing function with inverses $x = \langle z \rangle_1$ and $y = \langle z \rangle_2$.

The minimization notation $\mu y [P(\ldots, y)]$ means the least y (starting at 0) such that $P(\ldots, y)$ is true. The bounded minimization (acceptable in primitive recursive functions) notation $\mu y (u \leq y \leq v) [P(\ldots, y)]$ means the least y (starting at u and ending at v) such that $P(\ldots, y)$ is true. I define $\mu y (u \leq y \leq v) [P(\ldots, y)]$ to be $v + 1$, when no y satisfies this bounded minimization.

The tilde symbol, \sim, means the complement. Thus, set $\sim S$ is the set complement of set S, and the predicate $\sim P(x)$ is the logical complement of predicate $P(x)$.

A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, $P(x)$ means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and false is 0 in formulas like $y \times P(x)$, which would evaluate to either y (if $P(x)$) or 0 (if $\sim P(x)$).

A set S is recursive if S has a total recursive characteristic function χ_S, such that $x \in S \iff \chi_S(x)$. Note χ_S is a total predicate. Thus, it evaluates to 0 (false), if $x \notin S$.

When I say a set S is re, unless I explicitly say otherwise, you may assume any of the following equivalent characterizations:

1. S is either empty or the range of a total recursive function f_S.
2. S is the domain of a partial recursive function g_S.

If I say a function g is partially computable, then there is an index g (we tend to overload the index as the function name), such that $\Phi_g(x) = \Phi(x, g) = g(x)$. Here Φ is a universal partially recursive function.

Moreover, there is a primitive recursive function STP, such that $\text{STP}(g, x, t)$ is 1 (true), just in case g, started on x, halts in t or fewer steps.

Finally, there is another primitive recursive function VALUE, such that $\text{VALUE}(g, x, t)$ is $g(x)$, whenever $\text{STP}(g, x, t)$.

The notation $f(x) \downarrow$ means that f converges when computing with input x ($x \in \text{Dom}(f)$). The notation $f(x) \uparrow$ means f diverges when computing with input x ($x \notin \text{Dom}(f)$).

The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure f and input x, whether or not $f(x) \downarrow$. The set of all such pairs, K_0, is a classic re non-recursive set. K_0 is also known as L_0, the universal language. The related set, K, is the set of all effective procedures f such that $f(f) \downarrow$ or more precisely $\Phi_{f(f)}(f)$.

The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f, whether or not f is an algorithm (halts on all input). This set, TOTAL, is a classic non re set.

When I ask for a reduction of one set of indices to another, the formal rule is that you must produce a function that takes an index of one function and produces the index of another having whatever property you require. However, I allow some laxness here. You can start with a function, given its index, and produce another function, knowing it will have a computable index. For example, given f, a unary function, I might define G_f, another unary function, by $G_f(0) = f(0)$; $G_f(y+1) = G_f(y) + f(y+1)$

This would get $G_f(x)$ as the sum of the values of $f(0)+f(1)+\ldots+f(x)$.

The Post Correspondence Problem (PCP) is known to be undecidable. This problem is characterized by instances that are described by a number $n > 0$ and two n-ary sequences of non-empty words x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_m. The question is whether or not there exists a sequence, i_1, i_2, \ldots, i_k, such that $1 \leq i \leq n$, $1 \leq j \leq k$, and $x_1 x_2 \ldots x_k = y_1 y_2 \ldots y_k$.
• When I ask you to show one set of indices, A, is many-one reducible to another, B, denoted $A \leq_m B$, you must demonstrate a total computable function f, such that $x \in A \iff f(x) \in B$. The stronger relationship is that A and B are many-one equivalent, $A \equiv_m B$, requires that you show $A \leq_m B$ and $B \leq_m A$. The related notion of one-one reducibility and equivalence require that the reducing function, f above, be 1-1. The notation just replaces the m with a 1, as in $A \leq_1 B$.
1. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by listing all possible categories. No justification is required.

 a.) $D = \sim C$
 b.) $D \subseteq (A \cup C)$
 c.) $D = \sim B$
 d.) $D = B - A$

2. Choosing from among (D) decidable, (U) undecidable, (?) unknown, categorize each of the following decision problems. No proofs are required.

<table>
<thead>
<tr>
<th>Problem / Language Class</th>
<th>Regular</th>
<th>Context Free</th>
<th>Context Sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L = \Sigma^*$?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L = \phi$?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L = L^2$?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x \in L^2$, for arbitrary x ?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Use PCP to show the undecidability of the problem to determine if the intersection of two context free languages is non-empty. That is, show how to create two grammars G_A and G_B based on some instance $P = \langle \langle x_1, x_2, \ldots, x_n \rangle, \langle y_1, y_2, \ldots, y_n \rangle \rangle$ of PCP, such that $L(G_A) \cap L(G_B) \neq \phi$ iff P has a solution. Assume that P is over the alphabet Σ. You should discuss what languages your grammars produce and why this is relevant, but no formal proof is required.
4. Consider the set of indices \(\text{CONSTANT} = \{ f | \exists K \forall y \ [\varphi_f(y) = K] \} \). Use Rice’s Theorem to show that \(\text{CONSTANT} \) is not recursive. Hint: There are two properties that must be demonstrated.

5. Show that \(\text{CONSTANT} \equiv_m \text{TOT} \), where \(\text{TOT} = \{ f | \forall y \varphi_f(y) \downarrow \} \).
6. Why does Rice’s Theorem have nothing to say about the following? Explain by showing some condition of Rice’s Theorem that is not met by the stated property.

\[\text{AT-LEAST-LINEAR} = \{ f | \forall y \varphi_y(f(y)) \text{ converges in no fewer than } y \text{ steps} \} \]

7. The trace language of a computational device like a Turing Machine is a language of the form

\[\text{Trace} = \{ C_1 \# C_2 \# \ldots \# C_n \# | C_i \Rightarrow C_{i+1}, 1 \leq i < n \} \]

\text{Trace} is Context Sensitive, non-Context Free. Actually, a trace language typically has every other configuration word reversed, but the concept is the same. Oddly, the complement of such a trace is Context Free. Explain what makes its complement a CFL. In other words, describe the characteristics of this complement and why these characteristics are amenable to a CFG description.

8. We demonstrated a proof that the context sensitive languages are not closed under homomorphism, To start, we assumed \(G = (N, \Sigma, S, P) \) is an arbitrary Phrase Structured Grammar, with \(N \) its set of non-terminals, \(\Sigma \) its terminal alphabet, \(S \) its starting non-terminal and \(P \) its productions (rules). Since \(G \) is a PSG, it can have length increasing, length preserving and length decreasing rules. We wished to convert \(G \) to a CSG, \(G' = (N', \Sigma', S', P') \) where there are no rules that are length decreasing (since a CSG cannot have these). We developed a way to pad the length decreasing rules from \(G \) and then a homomorphism that gets rid of these padding characters. Define \(G' \) and the homomorphism \(h \) that we discussed in class and then briefly discuss why this new grammar and homomorphism combine so \(h(L(G')) = L(G) \), thereby showing that all \(re \) sets are the homomorphic images of CSLs.