Let set A be non-empty recursive, B be re non-recursive and C be non-re. Using the terminology (REC) recursive, (RE) non-recursive recursively enumerable, (NR) non-re, categorize each set below, saying whether or not the set can be of the given category and justifying each answer. You may assume, for any set S, the existence of comparably hard sets $S_E = \{ 2x | x \in S \}$ and $S_D = \{ 2x+1 | x \in S \}$. The following is a sample of the kind of answer I require:

Sample.) $A \cap C = \{ x | x \in A \text{ and } x \in C \}$

REC: Yes. If $A = \{0\}$ then $A \cap C = \emptyset$ or $\{0\}$, each of which is in REC.

RE: Yes. Let $A = \aleph_E = \{ 2x | x \in \aleph \}$; let $C = TOT_D \cup \text{HALT}_E$ then $A \cap C = \text{HALT}_E$ which is in RE

NR: Yes. If $A = \aleph$ then $A \cap C = \aleph$, which is in NR.

a.) $B - A = \{ x | x \in B \text{ and } x \notin A \}$ // Set difference

REC: Yes. Let $A = \aleph$, $B = \text{HALT}$, then $B - A = \emptyset$, which is in REC

RE: Yes. Let $A = \{0\}$, $B = \text{HALT}$, then $B - A = \text{HALT} - \{0\}$, which is in RE

NR: This is not possible. To see this, consider that $B - A = B \cap \sim A$. Since A is in REC, then so is $\sim A$. A semi-decision procedure for $B - A$ can be constructed by first seeing the chosen number, call it x, is in $\sim A$. If it is not then answer “NO.” If it is then run the semi-decision procedure for B. If it ever answers “YES,” produce the answer “YES.” Formally, if χ_A decides A and g_B semi-decides B, the $g_{B-A}(x) = (1 - \chi_A(x)) \times g_B(x)$ semi-decide $B - A$.

b.) $A^* B = \{ x^* y | x \in A \text{ and } y \in B \}$ // Multiplication

REC: Let $A = \{0\}$, $B = \text{HALT}$, then $A^* B = \{0\}$, which is in REC

RE: Let $A = \{1\}$, $B = \text{HALT}$, then $A^* B = \text{HALT}$, which is in RE

NR: This is not possible. To see this, we need just show that we can semi-decide $A^* B$. By definition $x \in A^* B$ iff $\exists a \in A, b \in B$ such that $x = a^* b$. But, the rules of multiplication of natural numbers then implies we can limit our search to values of a,b such $0 \leq a,b \leq x$, so we have bounds on each value. To take advantage of this, let’s get rid of 0 first. If $x = 0$, then x is in $A^* B$, if 0 is in A (quick check) or 0 is in B (semi-decidable). Thus, we can semi-decide this case. For all other cases, just search for each a, $1 \leq a \leq x$ such that a divides x. Include each such x/a in a list called Check. Now run the enumerating function for B to see if any of these items show up. If any does, answer “yes.” This provides a semi-decision procedure.

c.) $A \cup C = \{ x | x \in A \text{ or } x \in C \}$ // Set union

REC: Let $A = \aleph$, $C = \sim \text{HALT}$, then $A \cup C = \aleph$, which is in REC

RE: Let $A = \aleph_D$, $B = \text{HALT}_E \cup \sim \text{HALT}_D$, then $A \cup C = \text{HALT}_E \cup \aleph_D$, which is in RE

NR: Let $A = \{0\}$, $C = \sim \text{HALT}$, then $A \cup C = \sim \text{HALT} \cup \{0\}$, which is in NR