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A Secure Set of a graph is a set S of vertices with the property that for every subset X of S, N[X] ( S contains as many vertices as there are neighbors of X not in S. This is a special kind of Defensive Alliance, which only requires the property to hold for all singleton subsets of S. The question of whether a graph G has a Defensive Alliance of no more than k vertices, for arbitrary G and k, is known to be NP-Complete. The similar question for Secure Sets seems to be much harder than any NP-Complete problem. In fact, if P ≠ NP, it is probably not even in the set NP. On the other hand, if P = NP, it can be solved by polynomial algorithms.

How this all comes about and at least part of what it means will be the topic of this presentation.

1. Introduction

Many real world problems involve a collection of entities, for example, individuals, businesses, or countries, that compete for resources. A group of these entities can reach mutual agreements, or pacts, to simultaneously attack, or defend against, a common adversary. Informally, a group is secure when they can successfully defend themselves against any possible take-over or attack. Under certain conditions, this type of problem can be modeled as a graph with a group reaching an accord corresponding to a Secure Set in the graph. To date the complexity of determining when a graph has a secure set of some given size or, even for a given a set, determining whether it is or is not secure is unknown. 

Most of the literature on secure sets attempts to bound the size of a minimum secure set either for special classes of graphs or in terms of other graphical invariants. Section 3 shows formally that determining if a give set of vertices is a secure set is a difficult problem, which indicates the former problem may be even more difficult. Section 4 presents results that may prove helpful in developing algorithms and heuristics for these and related problems. At the least, these results provide insight into the structure and properties of secure sets. 

2. Background

Basic graph theory terminology can be found in [ ], while that involving complexity theory can be found in Garey and Johnson [ ]. Throughout, assume G = (V, E) is a connected graph. For a set S ( V, a vertex in N[S]–S ( V–S can "attack" any one of it's neighbors in S, while a vertex in S can "defend" itself or any one of its neighbors in S. An attack on S is an assignment for each vertex in N[S]–S to attack exactly one of its neighbors in S. A defense by S is an assignment for each vertex in S to defend either itself or a single neighbor in S. For a given attack and defense, a vertex v ( S is (successfully) defended if the number of defenders assigned to v is at least that of the number of attackers assigned to v. An attack is defendable if there is a defense in which all vertices of S are simultaneously defended.

Definition 1: S ( V is secure when all possible attacks by N[S]–S are defendable.

The security number of G, s(G), is the number of vertices in a smallest secure set in G. Secure sets were first introduced in [ ], with additional results found in [ , ], and are a type of defensive alliance.

Definition 2: S ( V is a defensive alliance when |N[x] ( S| ≥ |N[x]–S|, for every x ( S.

Defensive alliances, first described in [  ], have been used to model a variety of real world applications and requires only that each individual vertex in a set S be defendable. That is, attacks are restricted to be upon a single, but arbitrary, vertex in S. It was shown in [ ] that every minimal defensive alliance induces a connected subgraph, and that the defensive alliance number, da(G), satisfies ((((G)+1)/2( ≤ da(G) ≤ (n/2(. 

Every secure set is a defensive alliance. Therefore, da(G) ≤ s(G). There are graphs for which s(G) = ((n+1)/2( > (n/2(, see [ ], and ((n+1)/2( has been conjectured to be an upper bound for all graphs with n vertices. To date, n–(((G)/2( is the only verified upper bound [ ] for general graphs. On the other hand, not all defensive alliances are secure. For example, two adjacent degree 3 vertices x and y form a defensive alliance, but they constitute a secure set only when N[x] = N[y]. A characterization of secure sets is given next as Theorem A, proven in [ ], and is strikingly similar to the definition of defensive alliances.

Theorem A. [ ] S ( V is secure if and only if |N[X] ( S| ≥ |N[X]–S| for all X ( S.

In some sense, defensive alliances and secure sets represent two extremes of a continuum of potentially interesting and useful problems. For example, Shafique [ ] has studied k-defensive alliances where the definition requires, for some integer k, |N[x] ( S| ≥ |N[x]–S| + k, for every x ( S. By using different values of k, different levels of similarity can be enforced by classification algorithms in areas such as document retrieval and grouping web pages according to the number of links to pages within the group as compared to the number of links to pages not in the group.

3. Complexity

The problem of determining, for a graph G and an integer k, whether G has a defensive alliance with no more than k vertices has been shown to be NP–Complete [ ]. The similar problem for secure sets remains open and may not even be in the set NP, as discussed later.

SecureSet
Given: A graph G = (V, E) and an integer k.

Question: Does G have a secure set S ( V with |S| ≤ k?

For SecureSet to be in NP, it seems that the following problem must have a polynomial solution in order to verify in polynomial time that a secure set of an arbitrary "yes" instance of SecureSet is, in fact, a secure set with no more than k vertices.

IsSecure
Given: A graph G = (V, E) and a set S ( V.

Question: Is S a secure set? {That is, ( X ( S is |N[X] ( S| ≥ |N[X]–S|?}

It is easy to show the complement problem of IsSecure, given next, is in the set NP. Hence, IsSecure lies in Co–NP. 

IsNotSecure (Co–IsSecure)

Given: A graph G = (V, E) and a set S ( V.

Question: Does there exist W ( S such that |N[W] ( S| < |N[W]–S|?

The following is a known NP–Complete problem [ ] that will be reduced to IsNotSecure in the proof of Theorem 1 to establish its NP–Completeness of IsNotSecure.

Domination

Given: A graph G = (V, E) and an integer k.

Question: Is there a set D ( V such that |D| ≤ k and N[D] = V?

Theorem 1. IsNotSecure is NP–Complete.

Proof: For any "yes" instance of IsNotSecure and any set W ( V, there exists a polynomial algorithm that can determine the values of |N[W] ( S| and |N[W]–S|. Therefore, IsNotSecure is in the set NP. Let G' = (V', E') and an integer k be an arbitrary instance of Domination. We may assume 1 ≤ k < n = |V'|, otherwise the conclusion is immediate. 

Let V' = {v1, v2, …, vn} and construct an instance of IsNotSecure, a graph G = (V, E) and a set S ( V, as follows:

1) Vertices: V = V' ( X ( Y, where

 (i) X is an introduced set of n2 vertices partitioned into sets A, B, and C so that |A| = n2–n–k–1, B = {b1, b2, …, bn}, and |C| = k+1, and 

(ii) Y is an introduced set of n2 vertices partitioned into n sets Y1, Y2, …, Yn where Yi = {yi,1, yi,2, …, yi,n}, for 1 ≤ i ≤ n.

2) Edges: E is defined by

(i) V' induces G', X induces a complete subgraph, and

(ii) for each vertex vt ( V', vt is also adjacent to

a) all vertices in A,

b) bt ( B, and

c) for 1 ≤ i ≤ n, yi,j ( Vi, when vj ( NG'[vt].

3) Finally, let S = X ( V'.

Vertices in A and C are unlabeled and there are no edges between vertices of Y. Notice that, for any W ( S, |N[W] – S| ≤ |V – S| = n2 and, for every x ( X, |N[x] ( S| ≥ n2. Therefore, if there exists a set W ( S for which |N[W] ( S| < |N[W]–S|, W cannot contain any vertex in X. Hence, candidate sets W must be subsets of V'.

When W ( V', the number of vertices in the closed neighborhood of W in V – S is exactly |N[W]–S| = n|N[W] ( V'| ≤ n2, with equality if and only if W dominates G'. There are two cases to consider for sets W ( V'.

Case 1: W dominates V'. Then, |N[W] ( S| = |A|+|V'|+|W| = n2–n–k–1+n+|W| = n2–k–1+|W|. From the previous comments, |N[W]–S| = n2. Therefore, |N[W] ( S| < |N[W]–S| if and only if n2–k–1+|W| < n2, or |W| ≤ k.

Case 2: W dominates n–t < n vertices of V'. Then, |N[W] ( S| = |A|+n–t+|W| = n2–k–1–t+|W|. Again, since |N[W]–S| = n(n–t) = n2–nt, |N[W] ( S| < |N[W]–S| if and only if (n–1)t < k+1–|W|. Since t ≥ 1 and |W| ≥ 1, we must have k ≥ n, contradicting the assumption that k < n. Thus, in this case, N[W] ( S| ≥ |N[W]–S|.

Therefore, W ( V' is a dominating set of G' and |W| ≤ k if and only if, in the constructed graph G, |N[W] ( S| < |N[W]–S|. Thus, IsNotSecure is NP–Complete.    (
It follows that IsSecure, the complement problem of IsNotSecure, is in Co–NP Complete. Therefore, if P ≠ NP, to verify a "yes" instance of SecureSet would seem to require an oracle to first determine the set S, and then a nondeterministic algorithm to verify that S is secure. This implies SecureSet is in the second level of the polynomial hierarchy as described by Garey and Johnson. On the other hand, a quite different result holds when P = NP.

Theorem 2. If P = NP, there is a deterministic polynomial algorithm for SecureSet.

Proof: Under the assumption that P = NP, IsNotSecure and IsSecure are both in P since then, Co-NP and NP both collapse into P. Then, there would be a deterministic polynomial verifier for SecureSet and, hence, SecureSet would be in NP. But, since P = NP, there is a deterministic polynomial algorithm for SecureSet.    (
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