Order Notation

Big "Oh"

Let f(n) and g(n) be two real valued functions over the integers n ≥ 1. (Sometimes, it may be advantageous to allow n to be real. But, for our purposes, n usually will be the "size" of a problem instance which is normally an integer.)

Definition: f(n) is said to be "order" g(n) if and only if there exists positive constants c and N for which f(n) ≤ cg(n) for n ≥ N.

What this says is that, as n gets large, the function g(n) is an upper bound on the value of f(n). This is handy when we don't have a "nice" expression for f(n), but do for g(n). That is, we can use g(n) in calculations and know we are not underestimating the running time of whatever f(n) is measuring. Of course, we don't want to overestimate, either. So, our goal is to find the simplest and "tightest" g(n), that is, the best possible bound.

Notice that all the "c" does in the definition is to allow us to "talk" about (and use) g(n) in it's simplest form, i. e., with a leading coefficient of one, recognizing we may need to multiply it by a constant for some of the functions it bounds.

Sometimes you will see "f(n) is O(g(n))," to be read as "f(n) is 'big-Oh' of g(n)". Or, f(n) (O(g(n)), which is read "f(n) is in (or, an element of) O(g(n))."

{Many times you will see writers mistakenly write "f(n) = O(g(n))" and claim to mean the same thing. This isn't mathematically correct. In mathematics, ideally, symbols and operators have just one meaning – not like some programming languages which allow symbols to mean different things depending upon the context (overloading of operators). For example, mathematically A = B and B = A mean the same thing – the objects A and B are identical. Here, f(n) = O(g(n)) surely can not mean f(n) and O(g(n)) are identical: What does O(g(n)) = f(n) even mean. If, additionally, t(n) = O(g(n)), does that mean t(n) = f(n)? I don't think so. What it does mean is that the = in "f(n) = O(g(n))" doesn't mean = in the mathematical sense. So, what does it mean? The only way people have found to make sense out of it is to say O(g(n)) is a set of functions and f(n) is one of them. So we should say f(n) (O(g(n)), and not f(n) = O(g(n)).}

So, O(g(n)) is a set of functions – the set of all functions f(n) which are "bounded above" by g(n).

Just as we have O(g(n)), we also have O(f(n)). Then, when O() is interpreted as a set of functions, f(n) (O(g(n)) implies O(f(n)) (O(g(n)). Notice that, O(f(n)) = O(g(n)) if and only if f(n) (O(g(n)) and g(n) (O(f(n)).

Then, the big question is: For arbitrary functions f(n) and g(n), which of the following is true:

1) f(n) (O(g(n)),

2) g(n) (O(f(n)),

3) f(n) (O(g(n)) and g(n) (O(f(n)), or

4) no relation between f(n) and g(n).

{Normally, with the kind of functions we deal with (those that somehow measure running time of algorithms, anyway), option 4 does not occur.}

Often, this is pretty easy, especially when both functions are simple polynomials in n. For example, suppose f(n) = 3n2 and g(n) = n4. Clearly, 3n2 (O(n4), but n4 (O(3n2). {How do you prove the latter?}

What about: Is 100n3+50n2+n (O(n3)? Is n3 (O(100n3+50n2+n)?

Both are true, but how do you (easily) prove it?

What about: Is n.01 (O(log(n))? Or, is log(n) (O(n.01)?

Or, are they both true, neither true? How do you prove it?

What we need are some more "tools." Tools other than just the basic definition. One such tool follows by deriving a result equivalent to the basic definition. Notice that f(n) ≤ cg(n) for n ≥ N is equivalent to f(n)/g(n) ≤ c as n goes to infinity. That is, the lim f(n)/g(n) is a non negative constant, as n goes to infinity.

In fact, this tells us even more.

(0 ((f(n) (O(g(n)) and g(n) (O(f(n))

|

lim f(n)/g(n) =
| c ((f(n) (O(g(n)) and g(n) (O(f(n))

|

((((f(n) (O(g(n)) and g(n) (O(f(n))

The top result implies f(n) is bounded by g(n), but it's not tight. The second says g(n) is a bound on f(n) and the bound is tight, in fact, f(n) is also a bound for g(n). The last result is the same as lim g(n)/f(n) and, hence, is the reverse of the first result.

Try this with f(n) = 3n2 and g(n) = n4.

Then, try f(n) = 100n3+50n2+n and g(n) = n3.

What about when f(n) = n.01 and g(n) = log(n)?

For the last example, there is no obvious limit. That makes it a bit difficult to work with. Fortunately, there is help from Calculus: L'Hospital's Rule. When lim f(n) and lim g(n) both go to 0, or both go to infinity, as n goes to infinity, the lim f(n)/g(n) is not defined. But, with L'Hospital's Rule, where f '(n) is the derivitive of f(n) with respect to n:

lim f(n)/g(n) = lim f '(n)/g '(n).

In this case, f '(n) = .01 n.01–1 and g '(n) = c/n, where c is some constant which depends upon the base of the logarithm. Then, f '(n)/g '(n) = .01 n.01–1/(c/n) = .01 n.01. Therefore, the limit goes to infinity.

That means, from the above, that log(n) (O(n.01), but n.01 (log(n). In fact, with this technique we can show, for any positive constant (> 0, there is a constant c such that log(n) ≤ cn(for large enough n. That means log(n) does not grow very fast. In fact, as n gets large, for almost all practical purposes, it behaves much like a constant function.

Big "Omega"

To say f(n) is order ((g(n)), or f(n) (((g(n)), is kind of the reverse of O(g(n)). For big omega, we are saying that f(n) is bounded below by g(n), that is, for some constant c and n large enough (n greater than some constant N), f(n) ≥ cg(n).

Definition: f(n) (((g(n)) if and only if there exists constants c and N for which f(n) ≥ cg(n) for all n ≥ N.

So, ((g(n)) is the set of functions that are "eventually" (as n goes to infinity) upper bounds on g(n). In fact, f(n) (((g(n)) if and only if g(n) (O(f(n)). With this knowledge, you don't need to know much more about "big omega." It's use, as far as algorithm analysis is concerned, can be explained as follows: Suppose we have a running time function t(n) and we do not know much about it, but have been able to prove

t(n) (O(n5) and t(n) (((n2). Then we know there are two constants c and c' for which cn2 ≤ t(n) ≤ c'n5. So although we don't know t(n) exactly, we do know something about it – it's no better than n2, but it's no worse than n5.

Big "Theta"

f(n) (((g(n)) if and only if f(n) (((g(n)) and f(n) (O(g(n)). That is, there exists two constants c and c' such that cg(n) ≤ f(n) ≤ c'g(n). That means f(n) and g(n) are really the same order and only differ by the leading constant coefficient.
