Application-Server Matching (ASM)

William Strickland

4/8/2010
COT6410
Outline

• Abstraction
 – Key Terms
 – Assumptions
 – Informal Definition
 – Formal Definition

• Problem Difficulty
 – Proof of NP
 – Proof of NP-C
Outline cont.

- Restricted Instance Analysis
 - Aspects of Problem
 - Restricted Set 1
 - Restricted Set 2
 - Restricted Set 3

- Conclusions
Key Terms

● Servers
 - Physical machines that have some capacity for computational work.
 - Will support some operating systems but not others.

● Applications
 - Each placed and run on some server.
 - Requires some amount of regular computation (workload).
 - Requires a operating system be installed on the server that this application execute under.
Key Terms cont.

- Operating System
 - A distinct collection of base system software.
 - Can be installed on a server (given it is compatible).
 - Enables sets of applications to execute.
Assumptions

• Server performance can be quantified in such that relations hold for all applications.

• Applications require a constant amount of computation per unit of time.

• All applications run (truly) concurrently.

• No usage of dynamic virtual server usage.

• Operating Systems are licensed on a per server basis (not processor/core/user/transactions)
Informal Definition

- Given:
 - Sets of OS, servers, applications, pairs of servers and OS, pairs of applications and OS, license counts, workloads and capacities

- Question: Can the applications be placed on servers such that:
 - All applications are placed.
 - Each application is placed on exactly one server.
 - No server capacity is exceeded by the workload of applications.
 - No application is running on a server with a OS not supported.
 - No server is running a OS it cannot support.
 - No server has been run more than one OS.
 - License count for each OS has not been exceeded.
Formal Definition

• Given
 - Set of operating systems, \(O \)
 - Set of servers, \(S \)
 - Set of applications, \(A \)
 - Set of server-os pairs, \(U \)
 - Set of app-os pairs, \(V \)
 - Set of license counts, \(L \)
 - Set of server capacities, \(C \)
 - Set of application workloads, \(W \)
• Question:
 - Does there exist a set of triples, K, such that:
 • $(o, s, a) \in K$ where $o \in O, s \in S, a \in A$
 • $\forall K_i: \exists (s_i, o_i) \in U, (a_i, o_i) \in V$
 • $\forall a \in A \exists (o, s, a) \in K$
 • $\forall K_1 = (o_1, s_1, a_1), K_2 = (o_2, s_2, a_2) \in K$
 if $a_1 = a_2$ then $o_1 = o_2, s_1 = s_2$
 • $\forall K_1 = (o_1, s_1, a_1), K_2 = (o_2, s_2, a_2) \in K$
 if $s_1 = s_2$ then $o_1 = o_2$
 • $\forall s \in S, \sum (W_s) \leq C_s$ where $W_s = W_a$ iff $\exists (o, s, a) \in K$
 • $\forall o \in O, \sum (L_s) \leq L_o$ where $L_s = 1$ iff $\exists (o, s, a) \in K$
Proof of NP class

- ASM is a decision problem
- If given set of triples, K, as witness
- Verify yes instance in polynomial time
 - Loop through K
 - Verify S-O and A-O pairs exist
 - Verify all Applications placed exactly once
 - Verify OS licenses not exceeded
 - Verify capacities not exceeded
 - Verify no server assigned two OS
Proof NP Complete

- ASM shown NP
- Use known NP-C, 3-Dimensional Matching
- Show transformation from 3-DM to ASM
- Prove correctness of transformation
3-DM defined

- **Given:**
 - Set X, Set Y, Set Z
 - Set of triples T, where $(x, y, z) \in T$, $x \in X$, $y \in Y$, $z \in Z$

- **Question:**
 - Does there exist $M \subseteq T$
 - $\forall x \in X$, $\exists (x, y, z) \in M$
 - $\forall y \in Y$, $\exists (x, y, z) \in M$
 - $\forall z \in Z$, $\exists (x, y, z) \in M$
 - $\forall M_1, M_2 \subseteq M$, $x_1 \neq x_2$, $y_1 \neq y_2$, $z_1 \neq z_2$
• Transformation $3\text{DM} \Rightarrow P_{ASM}$

1) Accept 3-DM instance; (X, Y, Z, T)

2) Create new sets for ASM
 \[O' = \emptyset, \quad S' = \emptyset, \quad A' = \emptyset, \quad U' = \emptyset, \]
 \[V' = \emptyset, \quad L' = \emptyset, \quad C' = \emptyset, \quad W' = \emptyset \]

3) $\forall x \in X: O' = O' \cup \{x\}, \quad L'_x = 1$

4) $\forall y \in Y: S' = S' \cup \{y\}, \quad C'_y = 1$

5) $\forall z \in Z: A' = A' \cup \{z\}, \quad W'_x = 1$

6) $\forall t = (x, y, z) \in T: \quad U' = U' \cup \{(y, x)\}; \quad V' = A' \cup \{(z, x)\}$

7) answer ASM $(O', S', A', U', V', L', C', W')$
• Transformation proof key points

 – If 3-DM is yes
 • Exists M → K;
 • Guarantied for K_i, x, y, and z unique
 • Guarantied all Os, Server, and App exactly once
 • Guarantied OS pairs, T → U and T → V
 • ASM yes if 3-DM yes
- For constructed form ASM instance, if yes
 - Because \(L_i = C_i = W_i = 1 \), must use every OS, Server and App exactly once
 - Must exist \(T_i = (x, y, z) \) if \(U_i = (y, x) \) and \(V_i = (z, x) \)
 - If ASM yes then 3-DM is yes
- ASM is yes iff 3-DM is yes

- ASM is NP-complete
Aspects of Problem

- Two sources of difficulty in this problem:
 - Matching Elements on criteria (OS-Server-App).
 - Allocating units of work to units of computation.
- Whole problem shown to be NP-C.
- Instance set will be restricted to isolate sources of difficulty.
- For different instances, one or both parts may be trivial.
Restricted Set 1

- Removing the task allocation difficulty
 - Setting Server capacity to 1
 - Setting Application workload to 1
 - Setting OS license limit to 1
- This has already been done through the construction from 3-DM
- With trivial allocation, problem remains NP-C
Restricted Set 2

- Remove matching components
 - All applications support a single OS
 - All Servers support a single OS
 - License count for this OS = |S|
- Trivial to match Server and Application with OS
- Remaining problem similar to Bin Packing
Bin Packing Defined

- **Given**:
 - Set of item sizes, A
 - Bin size, V
 - Number of bins, B

- **Question**:
 - Can all items in A be placed in a bin such that for each bin $S \{1...B\}$ $\sum A_S \leq V$ where A_S is an item in bin S.

- Problem known to be NP-C.
Assorted Bin Packing Defined

- **Given:**
 - Set of item sizes, A
 - Set of bin sizes, V
 - Number of bins, B

- **Question:**
 - Can all items in A be placed in a bin such that for each bin $S \{1...B\}$ \[\sum A_S \leq V_S \] where is A_S is an item in bin S.

- **Problem NP-C from Bin Packing.** All Bin packing instances are instances of Assorted Bin Packing.
Redefine problem

- Problem redefined to match new set of instances
- Given:
 - Set of servers, S
 - Set of applications, A
 - Set of server capacities, C
 - Set of application workloads, W
- Question: Does there exist a set pair such that
 \[(s, a) \in K \text{ where } s \in S, a \in A\]
 \[\forall a \in A \ \exists (s, a) \in K\]
 \[\forall K_1 = (s_1, a_1), K_2 = (s_2, a_2) \in K\]
 \[\text{if } a_1 = a_2 \text{ then } s_1 = s_2\]
 \[\forall s \in S, \sum (W_s) \leq C_s \text{ where } W_s = W_a \iff \exists (s, a) \in K\]
• Transformation $\text{ABP} \xrightarrow{p} \text{ASM}_2$

1) Accept ABP instance; (A, V, B)

2) Create new sets for ASM

 $S' = \emptyset$, $A' = \emptyset$, $C' = \emptyset$, $W' = \emptyset$

3) $\forall v \in V: S' = S' \cup \{v\}$, $C'_{v} = v$

4) $\forall a \in A: A' = A' \cup \{a\}$, $W'_{a} = a$

5) answer ASM_2 (S', A', C', W')
• 'Proof' by restriction:
 - Created ASM_2 instance constructed as follows
 - $V \rightarrow S'$
 - $V \rightarrow C'$
 - $A \rightarrow A'$
 - $A \rightarrow W'$
 - True if placed $|A|$ applications (items) onto $|V|$ servers (bins) and for each server s
 $$\sum (W_s) \leq C_s$$ (placed weight is less than capacity)
Restricted Set 3

- Removing the task allocation difficulty and some matching difficulty
 - Setting Server capacity to 1
 - Setting Application workload to 1
 - Setting OS license limit to 1
 - Set each Application to support exactly 1 OS

- Same as restriction 1 but with direct correlation between OS and Application

- Becomes Polynomial with these restrictions
• 1-to-1 relation between Application and OS.
• Now only required to match OS to compatible server.
• Same result if forced instead 1-to-1 related Server and OS.
• Server and App are modeled the same.
• Holds without loss of generality.
2-DM Defined

• Given:
 - Set X, Set Y
 - Set of pairs T, where \((x, y) \in T, x \in X, y \in Y\)

• Question:
 - Does there exist \(M \subseteq T\)
 - \(\forall x \in X, \exists (x, y) \in M\)
 - \(\forall y \in Y, \exists (x, y) \in M\)
 - \(\forall M_1, M_2 \in M, x_1 \neq x_2, y_1 \neq y_2\)
• Transformation $ASM_3 \Rightarrow 2DM$

2) $O \rightarrow X'$
3) $S \rightarrow Y'$
4) $\forall (a, o) \in V$ if $\exists (s, o) \in V$ add (s, a) to T'
5) answer $2DM (X', Y', T')$
● If ASM_3 is yes
 - Exists $K \rightarrow M$;
 - Guaranteed for M_i, x and y unique
 - Guaranteed all x and y exactly once
 - Guaranteed OS pairs, $UxV \rightarrow T$
 - 2-DM Yes if ASM_3 yes

● For constructed form 2-DM instance, if yes
 - Must use all x and y,
 - Must exist $U_i=(x,o)$ and $V_i=(y,o)$ if $T_i=(x,y)$
- 2-DM is yes iff ASM_3 is yes
- ASM_3 is no harder than 2-DM
- 2-DM is polynomial so ASM_3 is polynomial
Conclusions

- As a whole, Application-Server Matching problem is a NP-Complete
- The problem actually has two aspects that make it difficult
 - Matching OS on applications and server
 - Application Workload Allocating
- Only if both are made trivial the instance of ASM can be solved in polynomial time.
Hard Instance Reduction

ABP

ASM

3-DM
References