Frame Building Problem

Stephen Fulwider Nadeem Mohsin

COT 6410 Spring 2009
Outline

1 Basic Problem
 - Description
 - Examples

2 Proof
Outline

1. Basic Problem
 - Description
 - Examples

2. Proof
Informal Description

- Need frames to build a greenhouse.
- We have some boards we can use.
- Boards can be cut to make smaller frames.
- Want to minimize extra wood needed.
Formal Definition: \textit{FBP}

Given

A set F of frames $\{f_i\}$ and a set B of boards $\{b_i\} \cup \{E\}$, where E is the length of the extra board.

Question

Does there exist an assignment of every frame to a board such that the sum of the lengths of frames assigned to a board is no greater than the length of the board?
Formal-er Definition: FBP

Given

A set F of frames $\{f_i\}$ and a set B of boards $\{b_i\} \cup \{E\}$, where E is the length of the extra board.

Question

Does there exist a total mapping $M : F \rightarrow B$ such that

$$\forall b_k \in B : \sum_{\substack{j \in M^{-1}(k) \cap F}} f_j \leq b_k$$
Outline

1. Basic Problem
 - Description
 - Examples

2. Proof
Examples

Example 1

\[B = \{20, 10\} \cup \{5\} \]
\[F = \{10, 5, 4, 3, 3, 3\} \]

Example 2

\[B = \{20, 10\} \cup \{5\} \]
\[F = \{10, 5, 4, 4, 3, 3, 3\} \]

Example 3

\[B = \{20, 10\} \cup \{5\} \]
\[F = \{10, 8, 5, 4, 3, 3, 3\} \]
Failed Approaches

- **Multidimensional Knapsack**
 - Similar flavor
 - \((v_i, w_i)\) versus \(f_i\)
 - Partial versus total mapping

- **Zero-One Integer Programming**
 - Define the family of indicator variables \(a_{ij}\) that indicate whether \(f_i\) is cut from \(b_j\).
 - \[\sum_{i} a_{ij} f_i \leq b_j\] subject to \[\sum_{ij} a_{ij} = |F|\].
BinPacking[1]

Given
Finite set U of items, a size $s(u) \in \mathbb{Z}^+$ for each $u \in U$, a positive integer bin capacity B, and a positive integer K.

Question
Is there a partition of U into disjoint sets U_1, U_2, \ldots, U_k such that the sum of the sizes of the items in each U_i is B or less?
Formal Definition: FBP_K

Given

A set F of frames $\{f_i\}$ and a set B of boards $\{b_i\} \cup \{E\}$, where E is the length of the extra board, and an integer K.

Question

Does there exist an assignment of every frame to a board such that the sum of the lengths of frames assigned to a board is no greater than the length of the board, using at most K boards?
Bin Packing $\preceq FBP_K$

- Restrict FBP_K to instances where all boards have the same length.
- $b_1 = b_2 = \cdots = b_{|B|}$
- Boards correspond to bins and frames correspond to items.
$FBP_K \propto FBP$

- Reduction from FBP_K to FBP.

Input to FBP_K
- F
- B
- E
- K

Input to FBP
- $F' = F$
- $B' = \{\text{Largest } K \text{ elements from } B\}$
- $E' = \text{Largest element from } B$
\[FBP_K \propto FBP \]

- \(\text{Yes}(FBP) \rightarrow \text{Yes}(FBP_K) \)
 - Clearly, this is true, since the created instance of \(FBP \) contains exactly \(K \) boards.

- \(\text{Yes}(FBP_K) \rightarrow \text{Yes}(FBP) \)
 - If the solution to \(FBP_K \) uses only elements of \(B' \), then this is clearly true.
 - Else, \(\exists b_i, b_j \ni b_i \text{ is used, } b_j \text{ is not used, } b_i \leq b_j \text{ and } b_j \in B' \).
 - Then every frame assigned to \(b_i \) can be assigned to \(b_j \).
 - By induction, this transforms any solution to a Yes-instance of \(FBP_K \) to a Yes-instance of \(FBP \).
BinPacking $\sim FBP_K \sim FBP$