Cook's Theorem

Definiton of NP: A decision problem ( is in the set NP if and only if there exists a Non Deterministic Turing Machine (NDTM) M that, when given an arbitrary instance x of ( on the input tape of M, will:

(1) Non deterministically place a string w ( (* on M's tape just to the left of instance x. If x ( Y((), w will be the "answer" to instance x – that is, sufficient information, along with x, to verify (in step (2) below) that x ( Y((). Otherwise, x ( N(() and the string w will be a random set of characters, or empty (we need not verify instances in N((). If we can – fine, but it is not necessary); and

(2) If x ( Y((), deterministically (and in polynomial time with respect to n = |x|), verify that x ( Y((), and finally halt in state qY. If x ( Y(() (i. e., x ( N(()), the machine M may halt in state qN, or it may compute forever – we are only guaranteed that M will not halt in state qY.

Notes

We may interpret this as two Turing Machines acting sequentially. The first is non deterministic and simply writes characters on the tape. The second is totally deterministic and can, but need not, utilize the result of the first. 

For certain problems in NP, TM's exist which ignore the "answer" given by the non deterministic phase. For example, if ( ( P there is no need to examine the answer, because a DTM exists which can compute the answer within the required time. In these case, "no" instances also can be correctly identified in deterministic polynomial time.

Further, we can not simply terminate execution (manually, or automatically, after some number of state transitions) of an apparently "looping" computation. We usually don't know the exact polynomial p(n) and, therefore, can never know when p(n) transitions have been exceeded.

Completeness

We first describe Completeness in terms of languages, since that is the setting in which the terminology originated. For any set of languages, say X, a particular language L ( X may "embody" the properties of all languages in X in the sense that for every language L' ( X all strings x ( (* can be transformed into strings f(x) so that x ( L' if and only if f(x) ( L. We call L the "completion of the set X," that L is "complete in X," or that L is, or is in, "X–Complete." 

For a language L to be X-Complete, (1) L must be in the set X, and (2) all languages in X must be be transformable into L by a polynomial time (per instance) deterministic algorithm. Notice that not all sets of languages must contain a complete language. Some sets of languages can contain incomparable languages.

Analogously, we say a decision problem B is NP–Complete (or in the set NP-Complete) if B ( NP, and all instances of every problem ( ( NP can be polynomially transformed into instances of problem B so that x ( Y(() if and only if f(x) ( Y(B).

Cook's Theorem: SAT is NP–Complete

For the following discussion ( is an arbitrary decision problem in NP, x is an arbitrary instance of ( (we assume valid instances of ( are polynomially recognizable by a DTM), and we assume the existence of a deterministic verifier M, as described in step (2) above. Then, we will construct an instance of SAT that is true if and only if M, when given input x, results in M halting in state qY, that is, if and only if x ( Y((). The details of the transformation will be described later (these details also appear in Garey and Johnson, pgs. 38-44).

The instance of SAT, f(x), will be constructed prior to any computation by M. Therefore, every instance x maps to an instance of SAT. (Actually, both x and M are involved in the transformation, but M is the same for every instance x, so we can think of the transformation as being just a function of x.)

All instances of x ( Y(() cause M to halt in state qY. Such instances will be mapped into satisfiable instances of SAT. All other instances will be mapped to SAT instances which can not be satisfied. That is, all instances x ( ( which either cause M to halt in state qN, or to loop forever. Now, we can claim:

1) x ( Y(() if and only if M halts on x in state qY 



if and only if f(x) ( Y(SAT); and

2) x ( N(() if and only if M halts in state qN or simply does not halt



if and only if f(x) ( N(SAT).

Note: we effectively ignore the complication that some instances in N(() might cause M to compute forever. Since they can not cause M to terminate in qY, we simply map them to instances in N(SAT).

Therefore, if the construction of SAT, described next, is correct, SAT will be NP–Complete.

SAT Construction

To construct instances of SAT, we must define a set of Boolean variables and set of clauses that are consistent with our understanding of a given problem (, an instance x, and a deterministic verifier M. The only properties we may assume are that ( is a decision problem in NP and, hence, has a polynomial time deterministic verifier M, and that x is a valid instance of (. Therefore, with n = |x|, there is a polynomial p(n) which bounds the computing time of M. It also places bounds on other aspects of M and the transformation. First, notice that the alphabet and M are fixed for problem (. Therefore, their respective sizes are independent of the size of the instance x and, hence, are constants.

Alphabet: ( = {s0, s1, …, s(} where s0 is a special "blank" character which does not appear in the language of (. It is used only as a marker by M. (Note: Garey and Johnson use ( rather than ()

States of M: The states in M must include a start state q0 and halt states q1 and q2 (for halt "yes" and halt "no"). Thus, we assume, for some constant r ≥ 3, the states of M are Q = {q0, q1, …, qr}.

Tape cell contents and read/write head position:  Initially, at time zero the tape contains the given instance x = x1x2…xn (xi ( (–{s0}) in "cells" 1, 2, …, n with the read/write head initially positioned on cell 1. Within p(n) time (transitions), the head can never move more than p(n) positions to the right, so we must have "blank's" in cells n+1, n+2, …, p(n)+1. Cells to the left of position 1 (i. e., cell 0, –1, –2, …, –p(n)) are filled by the nondeterministic "answer," but will not exceed that needed by p(n) possible moves to the left. So, we need only keep track of tape cell contents, and the position of the read/write head, for cells –p(n), –p(n)+1, …, p(n)+1. Notice, this also implies the non deterministic answer for a yes instance can not be exponentially large.

Now we introduce a set of Boolean variables whose assignments corresponds to whether or not M, when given string x, is at time i in state j, the tape head positioned at tape cell k, and tape cell k contains character c, for all times i, states j, tape cell positions k, and characters c.

Variables

At time i, for 0 ≤ i ≤ p(n),

Q[i, k]

0 ≤ k ≤ r


M is in state qk.

H[i, j]

–p(n) ≤ j ≤ p(n)+1

The r/w head is on cell j.

S[i, j, k]
–p(n) ≤ j ≤ p(n)+1; 0 ≤ k ≤ (
The contents of cell j is sk.

 This gives an order of 4p2(n) variables, i.e., a polynomial number of variables with respect to n = |x|. Intuitively, we will now construct clauses in such a way that allows (forces) these variables to have a satisfiable assignment consistent with M reading x and finally terminating in state q1 if and only if x ( Y((). For example, if x ( Y((), M must be in the start state at time 0 and in state q1 at time p(n). So, we could have clauses {Q[0, 0]} and {Q[p(n), 1]}. In fact, we will. We could also have a collection of clauses {(Q[0,k]} for 0 < k ≤ p(n), since M cannot be in any of the other states at time 0. In fact, we will not, because there will be another set of clauses that will subsume this set. But, this is the general idea, clauses will enforce a correspondence that can be satisfied if and only if they reflect the "physical" properties of a "properly running" Deterministic Turing Machine.

Other clauses will be produced which can be satisfied if and only if there is a sequence of state transitions, head movements, and tape contents that lead M to state q1, a property of M when given x ( Y((). These clauses can not be satisfied for any instance in N(() since M cannot then enter state q1.

Clauses

  See Garey and Johnson, pgs. 42-43.

Conclusions

Since SAT is NP–Complete, 3–Sat is NP–Complete. This, in turn, implies Vertex Cover is NP–Complete. Hence, Independent Set and Clique are both NP–Complete. We also can conclude that

(1) if any problem ( in NP–Complete can be solved in polynomial time be a DTM, then all problems in NP can be solved in deterministic polynomial time, i.e., P = NP, and

(2) if any problem ( in NP–Complete requires an exponential time DTM, then all problems in NP–Complete require an exponential time DTM, i.e., P ≠ NP.
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