Generally useful information.

- The notation \(z = <x, y> \) denotes the pairing function with inverses \(x = <z>_1 \) and \(y = <z>_2 \).
- The minimization notation \(\mu \ y \ P(\ldots y) \) means the least \(y \) (starting at 0) such that \(P(\ldots y) \) is true. The bounded minimization (acceptable in primitive recursive functions) notation \(\mu \ y \ (u \leq y \leq v) \ P(\ldots y) \) means the least \(y \) (starting at \(u \) and ending at \(v \)) such that \(P(\ldots y) \) is true. Unlike the text, I find it convenient to define \(\mu \ y \ (u \leq y \leq v) \ P(\ldots y) \) to be \(v+1 \), when no \(y \) satisfies this bounded minimization.
- The tilde symbol, \(\sim \), means the complement. Thus, set \(\sim S \) is the set complement of set \(S \), and predicate \(\sim P(x) \) is the logical complement of predicate \(P(x) \).
- A function \(P \) is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, \(P(x) \) means \(P \) evaluates to true on \(x \), but we can also take advantage of the fact that true is 1 and false is 0 in formulas like \(y \times P(x) \), which would evaluate to either \(y \) (if \(P(x) \)) or 0 (if \(\sim P(x) \))
- A set \(S \) is recursive if \(S \) has a total recursive characteristic function \(\chi_S \), such that \(x \in S \iff \chi_S(x) \). Note \(\chi_S \) is a predicate. Thus, it evaluates to 0 (false), if \(x \notin S \).
- If I say a function \(g \) is partially computable, then there is an index \(g \) (I know that’s overloading, but that’s okay as long as we understand each other), such that \(\Phi_g(x) = \Phi(x, g) = g(x) \). Here \(\Phi \) is a universal partially recursive function.
- The notation \(f(x)_\downarrow \) means that \(f \) converges when computing with input \(x \), but we don’t care about the value produced. In effect, this just means that \(x \) is in the domain of \(f \).
- The notation \(f(x)_\uparrow \) means \(f \) diverges when computing with input \(x \). In effect, this just means that \(x \) is not in the domain of \(f \).
- The Halting Problem for any effective computational system is the problem to determine of an arbitrary effective procedure \(f \) and input \(x \), whether or not \(f(x)_\downarrow \). The set of all such pairs, \(K_0 \), is a classic re non-recursive one.
- The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure \(f \), whether or not \(f \) is an algorithm (halts on all input). The set of all such function indices is a classic non re one.
- \(A \leq_m B \) (A many-one reduces to B) means that there exists a total recursive function \(f \) such that \(x \in A \iff f(x) \in B \). If \(A \leq_m B \) and \(B \leq_m A \) then we say that \(A =_m B \) (A is many-one equivalent to B). If the reducing function is 1-1, then we say \(A \leq_1 B \) (A one-one reduces to B) and \(A =_1 B \) (A is one-one equivalent to B).
1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NR) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

a.) \{ f | \text{domain}(f) \text{ is finite} \}

b.) \{ f | \text{domain}(f) \text{ is empty} \}

c.) \{ <f,x> | f(x) \text{ converges in at most 20 steps} \}

d.) \{ f | \text{domain}(f) \text{ converges in at most 20 steps for some input x} \}

2. Let set A be recursive, B be re non-recursive and C be non-re. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set D in each of a) through d) by listing all possible categories. No justification is required.

a.) D = \sim C

b.) D \subseteq A \cup C

c.) D = \sim B

d.) D = B - A

3. Prove that the Halting Problem (the set HALT = K_0 = L_0) is not recursive (decidable) within any formal model of computation. (Hint: A diagonalization proof is required here.)
4. Using reduction from the known undecidable \textbf{HasZero}, $HZ = \{ f \mid \exists x \ f(x) = 0 \}$, show the non-recursiveness (undecidability) of the problem to decide if an arbitrary primitive recursive function g has the property \textbf{IsZero}, $Z = \{ f \mid \forall x \ f(x) = 0 \}$. Hint: there is a very simple construction that uses \textbf{STP} to do this. \textit{Just giving that construction is not sufficient; you must also explain why it satisfies the desired properties of the reduction.}
5. Define \(\text{RANGE_ALL} = \{ f \mid \text{range}(f) = \beth \} \).

a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

b.) Use Rice’s Theorem to prove that \(\text{RANGE_ALL} \) is undecidable.

c.) Show that \(\text{TOTAL} \leq_m \text{RANGE_ALL} \), where \(\text{TOTAL} = \{ f \mid \forall y \varphi(f)(y) \downarrow \} \).

d.) Show that \(\text{RANGE_ALL} \leq_m \text{TOTAL} \).

e.) From a.) through d.) what can you conclude about the complexity of \(\text{RANGE_ALL} \)?
6. This is a simple question concerning Rice’s Theorem.
 a.) State the strong form of Rice’s Theorem. Cover all conditions for it to apply; don’t skimp on details.

b.) Describe a set of partial recursive functions whose membership cannot be shown undecidable through Rice’s Theorem. What condition is violated by your example?

7. Using the definition that S is recursively enumerable iff S is either empty or the range of some algorithm f_S (total recursive function), prove that if both S and its complement $\sim S$ are recursively enumerable then S is decidable. To get full credit, you must show the characteristic function for S, χ_S, in all cases. Be careful to handle the (two) extreme cases. Hint: This is not an empty suggestion.