PART II

Finite and Regular Languages

28

Basic FL'T—Finite and Regular Languages

29

Part 11
Finite and Regular Languages

5 Finite Languages

We’ll start with the simplest class of languages: the Finite Languages—{finite
sets of strings over some alphabet. While this, in itself, is a perfectly precise
definition of the class, it will be useful to characterize it inductively as well.

Definition 18 (Finite Languages) For any alphabet X:

e () is a finite language over X,

The singleton set {c} is a finite language over 3,

For each o € X3, the singleton set {o} is a finite language over 3,

If Ly and Ly are finite languages over ¥ then:

— L1 - Ly is a finite language over 3,

— L1 U Ly 18 a finite language over X.

e Nothing else is a finite language over X.

Which is to say, the finite languages are exactly those that can be constructed
using concatenation and union from the empty language and the languages
consisting of just the empty string or the unit strings of 3.

It remains to verify that this actually defines the class of all finite languages.
Typically, it is easiest to do this in two steps: show that every language con-
structed as in the definition is finite (the class contains only finite languages)
and show that every finite language can be so constructed (it contains all the
finite languages).

Lemma 1 Any language in the class of Definition 18 is finite.

Proof: As the class is defined inductively, we will prove this by structural
induction (i.e., induction on the construction of the language).

30 Basic FL'T—Finite and Regular Languages

(Basis:)

Clearly (, €, and all the singleton languages consisting of just a unit string
from ¥ are finite.
(IH:)

Suppose that L is obtained from L; and L,, both in the class of Defini-
tion 18, by either concatenation or union. Assume, for induction, that L; and
L, are finite.

(Ind:)

To show that L must also be finite: The strings in L - Ly are all strings

obtained by concatenating a string from L; and a string from L,. Thus,

card(L; - Ly) < card(L; x Lg) = card(L,) - card(L,).
9. Why is it < and not just =7
The strings in L; U Ly are all strings in either L; or Ly. Thus,
card(L; U Ly) < card(L;) + card(L,).
10. Again, why is it < and not =7

Since both the product and the sum of finite numbers are finite, L is also of
finite. .

We now turn to establishing that every language over X that contains
finitely many strings is constructible as in Definition 18. We’ll do this in
two steps: first we will establish that every singleton language over X is con-
structible, then we will use that result to establish that every finite language
over ¥ is constructible. (At this point it you should have a pretty good idea
how we are going to proceed.)

Lemma 2 FEvery singleton language over ¥ is constructible as in Definition 18.

Proof: Suppose L is a singleton language over X. Then L consists of just a
single string; let w denote that string. We will proceed by induction on the
length of w. (Note that this is the same as induction on the structure of w
given the inductive definition of strings of Definition 1.)
(Basis:)

If w = ¢ then w is constructed by one of the base cases of the definition.

Finite Languages 31

(IH:)
Suppose that w = vo for some v € ¥* and o € Y. Assume, for induction
that v is constructible as in Definition 18.

(Ind:)
The language {o} is constructible by one of the base cases of the definition.
L is then constructible as {v} - {o}. -

Lemma 3 FEvery finite language over ¥ is constructible as in Definition 18.

Proof: Suppose L is a finite language. We proceed by induction on the car-
dinality of L.
(Basis:)

Suppose card(L) = 0. Then L =) and is constructible by a base case of
the definition.
(IH:)

Suppose all sets of cardinality n are constructible and that card(L) = n+1.
(Ind:)

Let w be any string in L. Then {w} is constructible by Lemma 2 and
L\{w} has cardinality n and hence, by IH, is constructible. Since L is the
union of these two constructible languages, it is constructible as well. o

11. Why does this proof not work for infinite languages as well?
[Hint: Why does the induction fail?]

Putting these together, we get:

Claim 3 The class of languages defined in Definition 18 includes all and only
the finite languages.

12. Recall that we require alphabets to be finite. What happens to this
definition if X is infinite—does it still define the class of finite languages?
[Hint: Surely the fact that ¥ is infinite does not make the class of
languages that can be constructed any smaller: all finite languages over
>, will still be constructible. The question hinges only on Lemma 1,
which claims that only finite languages are constructible. Does the proof
of Lemma 1 depend on the finiteness of 7]

32 Basic FL'T—Finite and Regular Languages

6 Regular Languages and Regular Expressions

The Regular Languages are those obtainable by extending our descriptive
mechanism with the Kleene closure, in some sense the simplest means of defin-
ing infinite languages.

Definition 19 (Regular Languages (Kleene)) The regular languages are
those obtainable from the finite languages by union, concatenation, or Kleene
closure.

Since the finite languages are those obtainable from the empty language and
the singleton languages consisting of just the empty string or a unit string
we can define the regular languages inductively simply by adding the Kleene
closure to Definition 18.

Definition 20 (Regular Languages) For any alphabet ¥:
e () is a reqular language over X,
e The singleton set {e} is a regular language over X,
e For each o € X, the singleton set {c} is a regular language over X,
e If Ly and Lo are regular languages over Y then:

— L1 - Ly s a regular language over X,
— L1 U Ly 1s a reqular language over X.

— Li" is a reqular language over X.

e Nothing else is a reqular language over X.

To facilitate reasoning about the regular languages, Kleene introduced the
algebra of Regular Expressions.

Definition 21 (Regular Expressions) For any alphabet X:
e () is a reqular expression over ¥,
® ¢ 15 a reqular expression over Y,

e For each o € X, 0 is a reqular expression over Y,

Regular Languages and Regular Expressions 33

o If R and S are regular expressions over Y. then:

— (R-S) is a regular expression over X,
— (R+S) is a regular expression over X,

— (R*) is a regular expression over 3.

e Nothing else is a reqular expression over Y.

Note that, by this definition, all regular expressions must be fully paren-
thesized. This is generally relaxed, adopting precedence for the operators
with “*’ binding most tightly, followed by ‘-’ and then ‘+’. Also, ‘-’ is usually
dropped, with the concatenation of two expressions being indicated simply by
their juxtaposition.

Each regular expression stands for a particular regular language, its deno-
tation. We will use the notation L(R) for the language denoted by R.

Definition 22 (Denotation of a regular expression) For any reqular ez-
pression R over an alphabet 3:

(0 if R=1,
{e} if R=¢,
L(R)d=ef< {0} ifR=0€3,

L(S1) - L(S2) if R=(S1-5),
L(S1)UL(Sy) if R=(S1+5,),
L(s)" if R = (S°).

It should be clear that a language is regular iff it is the denotation of a reg-
ular expression. (One can prove this by induction on the structure of the set—
for the only if direction—and induction on the structure of the expression—for
the if direction.)

You should verify for yourself that the denotation is well defined: that
each regular expression denotes exactly one language. This follows from the
fact that the definition of the denotation includes a case for each case of the
definition of the class of expressions and that each of the set building operations
74, and “*7 are well defined.

\

13. What about the converse of this? Is it possible for a given language to be
the denotation of more than one regular expression? If so, give a simple
example.

[Hint: This is, in essence, asking if there are any regular languages that
can be constructed in more than one way.]

34 Basic FL'T—Finite and Regular Languages

14. Show that the basis expression ‘¢’ is redundant; every set that can be
defined using it can also be defined without it.
[Hint: Find a regular expression in which ‘¢’ does not occur but which
denotes {¢}.]

It should be emphasized that there is never any question about the meaning
of a regular expression—its meaning is exactly as defined in Definition 22. One
simply carries out the definition recursively.

Example: What is the denotation of ‘(b*a + b)*’?
Proceeding in excruciating detail:

L((b*a+0b)*) = a+b))*
b*a) U L(b))*
(- L
)*

(a)) U L(b))*
{a}) U{b})"
{a}) U{b})"

You may wish to simplify somewhat you are not required to (and be careful
if you do—it’s easy to corrupt an otherwise correct answer).

N N AN N N
_/v\/

15. What is the denotation of ‘(b*((ab*)*a + €))*’? Write out the each step
of the translation following Definition 22.

6.1 The Algebra of Regular Expressions

The idea that there may be many distinct expressions with the same meaning
should be familiar from the algebra of numbers. Just as we say that two
algebraic expressions are equal if the denote the same number, we will say that
two regular expressions are equivalent iff they denote the same set. And, just as
we can establish such equivalences in the algebra of numbers by applying the
familiar laws of addition, multiplication, etc., we can establish equivalences
between regular expressions by applying algebraic properties of the regular
operations on sets:

Definition 23 (Properties of the Regular Operations) If R and S are
reqular expressions (over any alphabet), we will say

def

R=38<% L(R) = L(S).

Regular Languages and Regular Expressions 35

For all reqular expressions R, S, and T':

Rl) R+S=S+R (+ commutative)
R2) R+0=0+R=R (0 is unit for +)
R3) R+R=R (idempotency of +)
R4) (R+S)+T=R+(S+T) (+ associative)
R5) RO=0R=10 (0 is zero for -)
R6) Re=¢R=R (¢ is unit for)
R7) (RS)T = R(ST) (- associative)
R8) R(S+T)=RS+ RT
R9) (R+S)T =RT + ST (- distributes over +)
R10) (0)* =e.
R11) R*=(R+¢)*.
R12) R*=R'R+e.

Each of these laws (or axioms) is justified by the properties of the correspond-
ing operations on sets:

Rl) R+S=S+R since L(R) U L(S) = L(S) U L(R)

R2) R+0=0+R=R since L(R)UD=0UL(R) = L(R)

R10) ()" = since L((0)7) = Upso[®] = 0° U Ujo, [0
= (e} UU 0] = {e} U0 = {] = L(e)

These axioms, along with uniform substitution of expressions for variables
(i.e., replacing each R in an equation with the same expression) and an infer-
ence rule that says, “if P = PQ+ R and @Q +¢ # @ then P = RQ*” derive all
true equations in the algebra of regular expressions. (We will see more of this
last inference rule shortly.) They are somewhat easier to apply with the help
of some additional identities (which are, of course, redundant in that they are
implied by the axioms):

I1 RR=RR'=(R")=R+R*

2 RR=e+R+R*+R*+.--+ RFR*, forany k >0
I3 R*R= RR*

4 (R+S)*=(R"+S5%) =(RS) = (RS)R"

I5 R(SR)* = (RS)*R

Example: To show that the regular expressions of Exercise 6 and Example 6

36 Basic FL'T—Finite and Regular Languages

denote the same language:

(0*((ab*)*a +€))*

= (b*(ab*)*a +b*e)* R8 (R=10*, S = (ab*)*a, T = ¢)
= (b"(ab")"a +b%)" R6 (R —b*)

= (b*a(b*a)* +b)* I5(R=a, S=10

= ((b*a)*b*a + b*)* I3 (R =b*a)

= ((b*a)*b*a+b*b+¢e)* R12 (R=0)

= ((b*a)*b*a+bb+c+¢€)* R3(R=¢)

= ((b*a)*b*a+ec+b*b+¢)* R1(R=10b%, S=¢)

= ((b*a)* +b*)* R12 (tw1ce) (R b*a, Ry =)
— (ba+b)* 14 (R = b*a, S =b)

In practice it is almost always easier to appeal to the properties of the de-
notations of the regular expressions, particularly when establishing identities.

Example: To show that (R*)* = R* it suffices to show that (L*)* = L* for
all languages L. We can establish this by showing inclusion each way:

To show that L* C (L*)*: Suppose w € L*. Then w € [J;5,[L'] and, in
particular, w € L* for some k& > 0. Then -

’LUELk Lk CU[U[Lz **

7>0 >0

To show that (L*)* € L*: Suppose w € (L*)*. Then w € Uj;5o[(UizolL'])]
and, in particular, w € (L*)' for some k,! > 0. Then

e (F)y=rMc| =1

>0

Example: To show that R(SR)* = (RS)*R it suffices to show that L(ML)* =
(LM)*L, which we do, again, by showing inclusion both ways.
To show that L(ML)* C (LM)*L: Suppose that w € L(ML)*. Then w €
L -U;so[(ML)"] and, in particular, w € L(ML)* for some k > 0. We proceed
by induction on k.
(Basis)

If £ =0 then

L(ML)’ = L{e} = L = {e}L = (LM)°L.

Regular Languages and Regular Expressions 37

(TH)

Suppose k > 0 and L(ML)*~t = (LM)*"'L.
(Ind:)

Then,

L(ML)* = LML(ML)*" = LM(LM)*'L = (LM)*L.
Hence, L(ML)* = (LM)*L for all kK > 0 and

w € L(ML)* = (LM)*L C | JILM)"]- L = (LM)*L.

i>0
The other direction is similar.

16. Show that R* = R + R*.
17. Show that (R + S)* = (R*S*)*.

18. Show that R* = R* + ¢
[Hint: This one is easier using the axioms and identities. Look at the
last example again.|

6.2 Defining Languages with Regular Expressions

The characteristic operation of regular languages is iteration. When attempt-
ing to capture a language with a regular expression one good way to start is
to look for a way to split strings in the language up into blocks that repeat.
This will not always be enough, but it is usually a good start.

Example: Give a regular expression for the set of strings over {a, b} in which
every pair of adjacent ‘a’s appears before any pair of adjacent ‘b’s. Prove that
the the language denoted by your regular expression is exactly the language
described.

Let’s call this language L;. We can start by noting that strings in this
language will always have two parts (either or both of which may be empty):
one in which no ‘bb’ occurs followed by one in which no ‘aa’ occurs. Thus, it
is the concatenation of Ly (the language over {a, b} in which no ‘b’ occurs)
and Lgg (the similar language for ‘aa’). To be complete, we should prove this
assertion.

38 Basic FL'T—Finite and Regular Languages

Lemma 4 L, = Ly - Lgg.

Proof:
(LgzLaz C L)

Let w € Ly Laz. Then w = wyw, where wy € Ly and wy € Lggz. If any bb
occurs in w it must occur in wy and, similarly, any ae must occur in w;. Thus
every such aa must precede any such bb.

(L g LELWZ)

Suppose w € L. If no aa occurs in w then w € {&} - Lgz which is a subset of
Ly Lz Similarly for the case in which no bb occurs in w. Suppose, then, that
at least one aa and one bb occur in w. Let w = wyaawy where no aa occurs
in wy (i.e., the aa is the last aa in w). Then wy € Ly and, since any bb must
follow the aa, wiaa € L. =
We can now develop a regular expressions for Ly and Lazz. We'll do Lg; the
expression for L is, of course, similar.

The insight here is that ‘b’s only ever occur singly. Any string in the
language, then, can be broken up into segments as follows:

As a regular expression: ri = a*(baa*)*(e +b).
(Note that this is not the simplest expression that denotes the language, but
it is one that will facilitate the proof of its correctness.)

Proof:
(L(rgs) € L)

If w € L(ry) then w = zyz where x € L(a*), y € L((baa*)*) and z €
L(e + b). Then no ‘b’s at all occur in z and at most a single ‘b’ occurs in z.
To show that no ‘bb’ occurs in any string in y we’ll prove, by induction on the
number of iterations of (baa*), the strengthened hypothesis: no ‘bb’ occurs in
any string in L((baa*)*) and no string in L((baa*)*) ends in ‘b’. This is trivially
true for ¢, the base case. For the inductive step we note that if the claim is
true for all 21 € L((baa*)™) then it is also true for

1179 € L((baa®)") - L(baa*) = L((baa™)")

Deterministic Finite-State Automata (DFAs) 39

for every xo € L(baa*), since the ‘b’ in x5 is neither preceded or followed by
a ‘b’ and x5 ends in ‘a’. Finally we note that, if no ‘bb’ occurs in any of z, vy,
or z and neither x nor y ends in ‘0’, then no ‘bb’ occurs in their concatenation
either.
(L € L(rg):)

Let w € L. Split w into substrings immediately before each ‘b’. Then

W =Wy -Wy---"- wk,

for some k£ > 0, where no ‘b’ occurs in wy and each of the w;, 1 < i < k
starts with ‘0’ and contains no other ‘b’. Since w contains no ‘bb’, each of the
w;, 1 <1 < k must contain at least one ‘a’. Moreover wy, is either a single b
or is a b followed by one or more ‘a’s. One of two cases holds, then; either

wy € L(a*), w; € L(baa™), 1 <i <k, and wy = b,

or
wy € L(a*), w; € L(baa™), 1 <i < k.

In either case w € L(ry). —

Finally, we put these together and get
L, = L(ry - raa) = L(a*(baa™)*(e + b)b* (abb*)* (e + a)).

19. Write a regular expression for the language over {a, b} in which no string
contains the sequence ‘bab’ as a substring. Prove that the regular ex-
pression denotes exactly that language.

7 Deterministic Finite-State Automata (DFAs)

The most restricted model of computation we will consider is very nearly the
simplest possible model. We will assume that there is a finite bound on the
amount of information the machine can store. We can model this in abstract
terms by thinking of the internal state of the machine as being a representation
of all the information it has stored. Since there is a finite bound on the amount
it can store, the machine will have but finitely many states. Schematically,
such a machine looks something like this:

40 Basic FL'T—Finite and Regular Languages

l;bcccbh\gaa

Y N
Here the input is on a read-only tape which is scanned left to right by the
machine. Each time the machine reads a symbol of the input it updates its
internal state and moves the head to the right. It halts when it moves off the
right end of the tape. We can fully specify the behavior of the machine by
specifying its initial state, how it passes from one state to the next in response

to the input, and in which states it should light the ‘Y’ lamp. The machine
accepts the input, of course, iff it halts with the ‘Y’ lamp on.

Definition 24 A Deterministic Finite-state Automaton (DFA) is a 5-tuple:
(@Q,%,6,q, F), where:
QQ is the set of states,
> s the input alphabet,
0:@Q xX — @ is the transition function
(mapping a state and an input symbol to the next state),
go € QQ s the start (or initial) state,
F C @ s the set of final states (or accepting states).

Note that the set () can be anything we like. It will often be useful to
take it to be a set of names with the name of a state being chosen to indicate
the significance of that state in the computation. The transition function of a
DFA will always be total, i.e., defined for every ¢ € Q and o € ¥. Thus the
DFA never crashes—it will always have a next state to go to so long as there
is more input to read. The only way for the DFA to halt is for it to reach
the end of the tape. Since this allows the state set and input alphabet to be
inferred from ¢, it will generally suffice to specify only §, the start state and
the set of final states.

7.1 Computations of DFAs

In order to carry out formal proofs about the computations of such a machine
we will need a precise definition of what these computations are. The way we

Deterministic Finite-State Automata (DFAs) 41

will approach this is identify a computation of the DFA with a formalized rep-
resentation of a trace of that computation: a sequence of tuples in which each
tuple represents the status of the machine one step of the computation. To
fully characterize the status of the DFA at any given point in the computation
we need to specify the input, the position of the read head and state of the
machine at that point. Since the read head moves only towards the right, the
input that has already been scanned can play no further role in the computa-
tion. Thus, we can represent both the input and the position of the read head
within it using a string representing the portion of the input that remains to
be read. We will refer such representations as Instantaneous Descriptions.

Definition 25 (Instantaneous Description of a DFA) An instantaneous
description of a DFA A = (Q, %, 9, qo, F) is a pair {g,w) € Q x ¥*, where q
the current state and w is the portion of the input under and to the right of
the read head.

The symbol being currently being read by the DFA is the first symbol of w. If
w is empty then the entire input has been scanned and the DFA has halted.

Definition 26 (Directly Computes Relation for DFAs)
{g,0) = (pv) & w=ov and p = 5(g,).

Note that this implies that {(g,¢) has no successor for any ¢. IDs in which
w = ¢ are terminal (or halted) IDs: they represent the fact that the DFA has
halted in state ¢q. Note also that, because § is a total function, every ID in
which w # ¢ has a successor and that successor is unique. (Thus, |—A is partial

functional.)

Definition 27 (Computation of a DFA) A computation of a DFA A =
(@Q,%,6,q, F) from state q; on input wy is a sequence of IDs ({g1,w1),...) in
which, for all i > 0, (g;—1, w;_1) \—A (@i, w;) and which is closed under |—A : for

all i, if w; # € and {(g;, w;) |—A (Gi+1, wit1) then (git1,w;t1) is included in the
sequence.

Since \—A is partial functional there is exactly one computation of A from each

ID in @ x ¥*. Since each step of a computation of a DFA consumes exactly
one symbol of the input, the length of the computation from (g, w;) will be

42 Basic FL'T—Finite and Regular Languages

|wy|. Moreover, w41 will be €. Thus, all computations of a DFA halt and
they all take exactly |w;| steps.
The ‘|—A " relation captures single steps of the computations of A. The

relation |—; holds between two IDs iff the second can be reached from the first

in zero or more steps:

Definition 28 (Computes Relation for DFAs)
(g, w) \—; (p,v) (“(¢,w) computes (p,v) in A”) iff (p,v) occurs in the compu-
tation of A on (q,w).

(g, w) \—Z (p,v) (“{g,w) computes (p,v) in n steps in A”) iff (p,v) is the
(n+ 1)t element of the computation of A on (g,w). (Le., iff (p,v) is the n'®
successor of {q,w).)

Then (g, w) | (p,v) iff (g, w) = (p,v) and (g, w) | (p,v) iff {g,w) | (p,v)

for some n.

Lemma 5 |—; is the reflerive, transitive closure of |—A .

Proof: (= extends |- :)

(g, w) |—; (p,v) iff (g, w) |—A (p,u). (By definition of a computation.)
(¥ is reflexive:)

0

(g, w) |5 (g, w).
(E is transitive:)

If {p,v) occurs in the computation of A on (g, w) then the computation of
A on (p,v) is a suffix of the computation of A on (g, w). Thus, (g, w) |—; (p,v)

and (p, v) \—; (0,u) iff (0, u) occurs in the computation of A on (g, w), i.e., iff

(@) 2 (o,0) -

The language accepted by a DFA A (which we will denote L(.A)) is the set
of strings w for which A, when run from the start state with w on the tape,
halts in an accepting state.

Deterministic Finite-State Automata (DFAs) 43

Definition 29 (Language Accepted by a DFA) The language accepted by
a DFA A=(Q,%,4,q0, F) is

L(A) = {w [{0, w) | (a,€),q € F}

Definition 30 (Recognizable Language) A language is recognizable iff it
s accepted by some DFA.

The following is another intuitively obvious lemma, but one that is fre-
quently useful and deserves to be established rigorously.

Lemma 6 For all w,v € ¥* and ¢,p € Q,
(g, w) = (p,e) & (g wv) |5 (p,v).

This just points out that the initial portion of a computation is completely
independent of the unscanned part of the input: all strings that share a prefix
compute exactly the same sequence of IDs on that prefix.

Proof: We will prove both the ‘if’ and the ‘only if’ directions at the same time
(violating our general rule—the reason will be evident below). Proceeding by
induction on the length of the computation:

(Basis:)
(@w) P (pe)e g=pandw=e¢ S (guw) P (pv).
(IH:)
Suppose the lemma is true of all computations of length n or less.
(Ind:)

Suppose (g, w) ' (p,e). Then there is some w; € ¥*, 0 € ¥ and p' € Q

such that w = w0 and
<QJ ’U)10'> |_’fl <p,7 U) |_ <p: 6) .

By the ‘<=’ direction of the IH, (g, w;) & (p',¢).
By the ‘=’ direction of the TH, (¢, wiov) = (p',0v) = (p,v).
Which is, (g, wv) F (p,v).

44 Basic FL'T—Finite and Regular Languages

A

For the other direction, suppose (g, wv) p,v). Then, again, there is

some w; € ¥*, 0 € ¥ and p’ € @ such that w = wyo and
(g, wiov) I (p',00) = (p,v),

and, by the definition of |- , it must be the case that §(p’,0) = p.
Proceeding, again, with, first, the ‘<=’ direction of the IH and then the ‘=’
direction, (g, w;) © (¢,) and then (¢, wi0) I (p/,0). Moreover, (p',0) |-

(p,€), since 6(p', o) = p. Thus,
(g wio) [(P,0) = (pe).

_1
(The idea, here, is that we use one direction of the IH to break the computation
and the other to splice it back together. Note that, even though we prove
both directions with a single induction, we prove them separately them in the
inductive step.)

7.2 Transition Graphs

It turns out to generally be simpler to prove things about a DFA if we think
of it as a labeled, directed graph (know as its transition graph):' @ is the
set of nodes with F' being a distinguished subset (conventionally indicated by
circling them), the transition function determines the edge relation with the
edge between two states being labeled with the input that causes the transition,
and the initial state is indicated by an in-edge with no source. For example:

Q@ = {0,1,2,3}

Y = {a,b}

d = {{0,a) — 1, (0,b) — 3,
(1,a) = 1, (1,0) — 2,
(2,a) — 1, (2,b) — 3,
(3,a) — 3, (3,b) — 3}

@0 = 0

F = {0,2}.

'Indeed, it is more common to present DFAs in this way. We have chosen to present
them in terms of IDs and computations in order to emphasize a consistent pattern from
DFAs through PDAs and beyond.

Deterministic Finite-State Automata (DFAs) 45

In these terms, as the automaton scans an input string it traces out a path
in the graph, starting with ¢g, in which the labels of the edges form the same
string. Note that the requirement that ¢ be total corresponds to a requirement
that every node in the graph has an out-edge for each symbol in 3. It follows
that every string over ¥ labels some path from ¢y. A string is accepted iff the
corresponding path ends at a final state.

In this context it is easy to see that the requirement that § be total does
not effect the class of languages accepted by DFAs; we can always extend a
partial transition function to a total one by adding a sink state (such as state 3
in the example) which is non-final and from which no path ever leaves. Any
edges with no place else to go can simply fall into the sink.

It should be reasonably clear that computations of a DFA correspond, in a
very close way, to paths through its transition graph. Thus, if we are to prove
lemmas about the set of strings accepted by a DFA, and hence about the set
of paths through its transition graph, we will need a precise definition of the
path function—the function that, given a starting node and a string, returns
the ending node of the path from that starting node that is labeled with that
string . This, as should come as no surprise, is defined inductively from 4, the
“edge” function.

Definition 31 (Path Function of a DFA) The path function § : QxX* —
Q 1is the extension of § to strings:

o 0(q,e) =g, forallg € Q.
e Ifge @, weX and o € X then 5(q,wo) = (5(5((], w), o).
e Nothing Else.

This just says that from any node the path of zero length (labeled ¢) never
leaves that node and that the ending node of the path from state ¢ labeled
‘wo’ can be found by first following the path from state ¢ labeled ‘w’ and then
following the edge labeled ‘o’.

You should note that 5(q, o) = p (interpreting ¢ as a unit string) iff
d(g,0) = p (interpreting o as a symbol).

Just as the directly computes relation captures, in essence, the meaning of
0, we can think of 5 as expressing the computes relation:

A

6(g,w) =piff {(g,w) = (p,€).

46 Basic FL'T—Finite and Regular Languages

We can use this to formalize what it means for an automaton to accept a
string purely in terms of 4.

Definition 32 (Language Accepted by a DFA (in terms of paths)) The
language accepted by a DFA A= {Q,%,9,q, F) is

L(A) = {w € S* | §(go, w) € F}.

This gives us a purely declarative definition of what it means for a given
DFA to accept a given string. While we have motivated it in terms of the
behavior of a particular sort of machine and in terms of certain graphs, it
does not in any way depend on those interpretations. L(A) is defined purely
in terms of 4, go and F, and ¢ is defined purely in terms of §. This is the
definition we will use in proving claims about L(.A). While, again, we may
motivate our proofs by appealing to machines or graphs, the actual proof itself
will be in terms of the definitions of L(A) and 4.

20. Sketch a proof that if w € L(A) according to Definition 29 then w €
L(A) according to Definition 32. (Just give the base case(s), the IH, and
an outline of the inductive step.) R
[Hint: Start out by proving that (g, w) |—; (p,¢e) only if 6(q, w) = p.]

21. Sketch a proof of the converse: that if w € L(A) according to Defini-
tion 32 then w € L(A) according to Definition 29.
[Hint: Start with a lemma similar to that of the previous hint.]

22. Prove for all DFAs A, that ¢ € L(A) < ¢o € F. (Do not forget that you
must prove both directions of the ‘<’.)

23. Our interest, in defining DFAs, is in defining L(A). But L(A) is defined
in terms of rather than 6. Why, then, don’t we define DFAs in terms
of ¢ instead of §7

24. Suppose A =(Q, %, 6, qo, F) is a DFA and that § is defined accordingly.
Prove that, for any strings x and y in 3%,

~

0(q,vy) = 6(d(g, =),).

[Hint: use induction on |y|.]

Deterministic Finite-State Automata (DFAs) 47

7.3 Defining Languages with DFAs

In this section we will develop a methodology for defining DFAs in a way that
makes proving their correctness nearly automatic (although still somewhat
tedious). While there will usually be ways in which the proofs can be simplified,
this methodology will always work. More importantly, in successfully defining
a DFA you will inevitably have to carry out the first few steps of the method,
even though you might do so implicitly. Thus the methodology is, in any case,
a reasonable way to organize your attack on the problem.

Example: [Scheduling a machine tool] Consider the problem of specifying
schedules for a machine tool which is used to manufacture a number of distinct
types of parts (e.g., A, B, ...) and where each type of part may require a
number of distinct operations (e.g., Ai, Ay, As, By, Bo, ...). Given a set of
such operations, a schedule for the tool is a finite sequence of operations, i.e., a
string in which the alphabet is just the set of operations. In general, there will
be various constraints, such as restrictions on the order in which the operations
are completed, etc. A feasible schedule, given some set of constraints, is a
finite sequence of operations in which all the constraints are met and all parts
are completed—the sequence has the same number of each of the operations
required to complete a given type of part. We will return to variations of this
problem later. For now, let us assume that there are two types of parts: A
and B. Both require two operations: parts of type A require A; and A, and
parts of type B require B; and B,. These can be completed in any order,
but, in a passing nod to realism, no more than two partially completed parts
that can be stored. We will assume that whenever a part can be completed
it will be, thus if the schedule calls for operation A, for instance, and there
is any part which for which A, has been completed (but A; has not) then the
operation will complete that part. A feasible schedule for this instance, then,
is any string over {A, Ay, By, Bs} in which

e the number of occurrences of A; is equal to the number of occurrences
of AQ,

e the number of occurrences of B; is equal to the number of occurrences
of BQ,

e in any initial segment of the sequence the difference between the number
of ‘Ay’s and ‘Ay’s plus the difference between the number of ‘B;’s and
‘By’s is never more than two.

48 Basic FL'T—Finite and Regular Languages

Let Ly be the language consisting of the set of such strings. Show that this is
a regular set by providing an automaton and showing that it accepts all and
only the strings in L.

A good way to attack a problem like this is to think of a DFA as a classifier
of strings—all strings that label paths (from the start state) leading to the same
state are lumped together. This is certainly true for the DFA, since all that it
remembers about the portion of the input it has scanned is the state that it
has reached. If two strings lead to the same state then, from the DFA’s point
of view, they are indistinguishable.

The question for us is to figure out what information about the initial
portion of a given string we need to keep track of in order to tell if the remainder
of the string completes it in the sense of making it a feasible schedule. The
key insight here is that all that we need to track is the type of any partially
completed parts and whether at any point in the string there have ever been
more than two parts pending. The remainder of the string will complete a
feasible schedule iff it completes each of those outstanding parts without ever
leaving more than two parts pending. Since the feasibility constraint is violated
whenever more than two parts are pending, we never need to keep track of
more than two partially completed parts. This is what bounds the amount of
memory needed to recognize the language and is what makes it regular.

The state set, then, will include a state for each possible combination of
two or fewer partially completed parts, plus a sink state for the case in which
more than two are encountered at some point in the schedule. We will label
these with the operations that have been completed on the pending parts:

Q ={e,A1,A2,B1,Bs, A1A1, A1By, A1 By, AyAy, AyBy, AsBsy, B1 By, BoBo, Fail}.

Note how we have obtained this state set: we start by identifying what
characteristics of the strings we need to remember while scanning them and
then define a state for each value those characteristics can take. The path from
the start state labeled by any given string will lead to the state that encodes
the distinguishing characteristics of that string. This is the only phase of this
methodology that is not essentially automatic. It may well take a great deal of
insight to be able to identify a set of characteristics that will work. Moreover,
there will often be many ways one might do this for a given language and it will
often be easier to prove that one state set properly characterizes the strings in
a language than it will be to prove the same thing for another. Nonetheless, it

Deterministic Finite-State Automata (DFAs) 49

is almost always harmless to distinguish more states than necessary—so long
as you only distinguish finitely many of them—the only cost will be to make
the rest of your proof longer.

In settling on a set of states and an interpretation of them in terms of
the information they encode about the input strings we have fully determined
the structure of the automaton. Transitions between states must preserve the
interpretation of the states. If we are in some state ‘g’ and see some input,
‘A;’, for instance, the state we enter is determined by what happens if we
perform operation A; given the status of pending parts encoded by ¢. If ¢ is
‘B;’ we must enter state ‘A;B;’. If ¢ is ‘A3B;’, on the other hand, we will
complete the pending ‘A’—we go to state ‘B;’. And if ¢ is ‘A;A;’ we must
fail. Furthermore, the start state must be that state encoding the status of
the empty string—no partially completed parts in this case, state ‘c’. Final
states will be all states that encode strings that meet the specification of the
language. Here this is all feasible schedules—those that complete every part
without entering fail. These, then, will all end up in state ‘¢’; the set of final
states is just {¢}.

So our choice of state sets yields the automaton of Figure 1(call it Aj).
We must now prove that L(A;) = L,. To prove that every string accepted
by the automaton is in Lo, i.e., that L(As) C Lo, we must prove that every
string labeling a path from ‘€’ that ends in a final state (i.e., in ‘¢’) is in Ls.
We actually do this by induction on the length of the path but, since there is
a direct correspondence between paths in strings, this is the same as proving
it by induction on the length of the string. To prove that every string in L,
is accepted by A (that Ly C L(A3)) we must prove that every such string
labels a path from ‘¢’ back to ‘c’. One way to do this would be by induction
on the length of the string but this is very tedious. The approach we will take
exploits the fact that our DFAs are total. Since every string labels a path from
the start state to some state, if a string is not in the language accepted by the
automaton it must label a path that ends at a non-final state. We can then
argue that

w € Ly = w e L(A)

by the contrapositive
w & L(Ag) = w & Lo,

which we can establish by showing that all strings that label paths from the
start state that do not end in a final state are not in L.

50 Basic FL'T—Finite and Regular Languages

Figure 1: Ay: Automaton for feasible schedules.

What we need, then, is a characterization, for each state, of the strings
that label paths to those states that is in terms that will allow us to show
those strings are or are not in Ly. That is to say, we are looking to establish a
system of invariants, one for each state, which suffice to prove the correctness
of the automaton. These have the form:

~

0(go, w) = ¢ = (Some characterization of w),

for each ¢ € Q. (Note that, because we are arguing the backwards direction
using the contrapositive, we need only prove the forward implication.)

We state the invariants in a compact form. Because of the way we have
named the states, for all states other than the fail state the unmatched symbols

Deterministic Finite-State Automata (DFAs) 51

in the string labeling the path to that state are exactly the symbols in the name
of the state. Thus |w[,, — |wl,, = [¢|4, — lal4,,” i-e., the difference between
the number of ‘A;’s and ‘Ay’s is the same for both the string and the name of
the state. The same is true for ‘B’s.

Lemma 7 (Invariants) For all w € X*:
(Fail:) é(e, w) = Fail = w = uv for some u,v such that:

||“|A1 - |U|A2| + H“‘Bl - |“|32| > 2.

(q # Fail:) (e, w) = q # Fail =

‘w‘Al - |w|A2 = |Q‘A1 - ‘q|A2
‘w‘Bl - |w|B2 = |Q‘Bl - ‘q|B2

and for all prefives u of w

[lul g, = lula, |+ [lulp, = lulp,| <2

Proof: [by induction on |wl|]
(Basis:)
Suppose |w| = 0. Then w =¢, §(g,e) = ¢ and

|€‘A1 = ‘8|A2 = |€‘Bl = |€|B2 = 0'

One can verify that this satisfies the invariants, since d(e,w) = ¢ # Fail and
w = ¢ (and, thus, have equal numbers of ‘A;’s and ‘B;’s).
(Inductive Step:)

Suppose that |w| > 0 and that the lemma is true for all strictly shorter
strings. Then w = w'c for some ¢ € ¥ and w' € ¥* for which the lemma is
true. To show that the lemma is true of w as well:

To conserve space we will work with a table. (See Figure 2.)

The way the table should be read is:

%|w|, is the number of occurrences of the symbol o in the string w.

52 Basic FL'T—Finite and Regular Languages
w' w
oe,w) | dew') | o | |w'ly —|wly, | W — Wi, | Ovr | [wly, —|wly, | [wlp, —|wp, | Ovr
£ A1 A2 1 0 X 0 0 X
Ao A -1 0 X 0 0 X

B; Bo 0 1 X 0 0 X

B> B 0 —1 X 0 0 X

Ay € Ay 0 0 X 1 0 X
A]_Al A2 2 0 X 1 0 X

A1B1 B> 1 1 X 1 0 X

A1B> B1 1 —1 X 1 0 X

Aa € Aa 0 0 X -1 0 X
A2A2 A1 —2 0 X -1 0 X

As By B> —1 1 X —1 0 X

A232 Bl —1 —1 X —1 0 X

B1 £ B 0 0 X 0 1 X
A1B1 | A 1 1 X 0 1 X

A231 A1 —1 1 X 0 1 X

B1B; B> 0 2 X 0 1 X

B> € B 0 0 X 0 -1 X
A132 A2 1 —1 X 0 —1 X

Ao2B> A -1 —1 X 0 —1 X

B2 B> B 0 -2 X 0 —1 X

A1A1 Al A1 1 0 X 2 0 X
A1B1 A1 B 1 0 X 1 1 X
B Al 0 1 X 1 1 X

Ale A1 B> 1 0 X 1 -1 X
B> A1 0 —1 X 1 —1 X

A2A2 A2 A2 -1 0 X —2 0 X
A2B1 A2 B1 -1 0 X -1 1 X
B Aoy 0 1 X -1 1 X

Ang A2 B> -1 0 X -1 —1 X
B A2 0 -1 X -1 -1 X

B1B; B; B; 0 1 X 0 2 X
B2B> B> B> 0 —1 X 0 —2 X
Fail A1Aq A 2 0 X 3 0 v
B 2 0 X 2 1 v

B 2 0 X 2 —1 v

A]_Bl A1 1 1 X 2 1 v

B 1 1 X 1 2 v

A1B2 A1 1 —1 X 2 —1 v

Bo 1 -1 X 1 —2 v

As Ao Aoy —2 0 X -3 0 v

B; —2 0 X —2 1 v

B -2 0 X -2 -1 v

A2B1 A2 -1 1 X -2 1 v

B1 -1 1 X —1 2 v

As By Ao -1 —1 X -2 —1 v

Boy -1 -1 X -1 —2 v

BlBl A1 0 2 X 1 2 v

Ao 0 2 X -1 2 v

B 0 2 X 0 3 v

Bsz A1 0 —2 X 1 —2 v

Ao 0 —2 X -1 —2 v

B 0 —2 X 0 —3 v

Fasil Py — — v — — v

Figure 2: Proof of Lemma 7.

Deterministic Finite-State Automata (DFAs) 53

If the entry in the first column is true then one of the associated
rows must be the case, where the second column is the state after
reading w' and the third is the value of o, the fourth and fifth record
excess parts after w' the sizth whether there are have been more
than two parts pending after any (not necessarily proper) prefix of
w'. and the seventh, eighth and ninth record the same information

for w.

The second and third column are taken from the definition of 4, the fourth
through sixth from the induction hypothesis, and the seventh through ninth
from combining the previous entries in the rows.

Note that the inductive step for any one of the invariants depends on the
induction hypothesis for one or more of the other invariants. Thus, they all
must be proved together. Such a proof of a number of interdependent claims
is called proof by simultaneous induction. Note also that even if all we wanted
to establish was the invariant for ‘c’, we would need the invariants for ‘A;’,
..., ‘By’ in order to carry out the inductive step of that proof and would, in
turn, need the invariants for the other states (with the exception of ‘Fail’) in
order to carry out those proofs. Thus, an invariant for each (non-sink) state
is required in any event.

It is easy to verify from the table, by taking ¢ from the first column and
the excess ‘A;’s and ‘B;’s in w from the seventh and eighth, that the invariants
hold in all cases. -

There is nothing magical about the table, it simply is an essentially auto-
matic way of organizing the tedious task of carrying out the proof exhaustively.
It is not necessary to use it. Note, though, the inductive step has a case for
each state in () and for each edge incident on that state. This can make for a
long proof. As each row of the table carries out the proof for one case, it serves
to present the proof in a concise and organized way. Again, the argument can
almost always be made in a more compact—read cleverer—fashion. But by
working exhaustively you minimize the chance of overlooking cases.

It remains now to prove that the invariants imply that the automaton
accepts a string iff it is a feasible schedule. This is nearly trivial. If w € L(.A)
then 5(5,11)) = ¢ which implies, by the invariant, that the number of ‘A;’s
and ‘Ay’s and the number of ‘B;’s and ‘By’s are equal and that there is no
prefix of w in which the sum of the absolute differences between these ever
exceeded two. Conversely, if w ¢ L(A) then d(e, w) € Q\{e} (because & and,

54 Basic FL'T—Finite and Regular Languages

consequently 4, is total). Again, from the invariants, it is easy to verify that
this implies that there is either a partially completed part left at the end of
the schedule or that the number of partially completed parts exceeded two at
some point in the schedule.

25. Consider a system consisting of two processes (A and B) exchanging
messages. Process A sends two types of messages to process B: m; and
mso. Process B sends three types of acknowledgment to process A: aq,
ag, and aq9, which acknowledge my, ms, and m; and msy simultaneously,
respectively. The processes are required to follow the following protocol:
Process A can send either message type at any time, but only if every
prior message of that type has been acknowledged. Process B may send
any acknowledge at any time, but only if it has received a message(s) of
the appropriate type(s) which it has not yet acknowledged. Process B is
required to eventually acknowledge every message received from Process
A.

Finite sequences of messages exchanged within this system are just strings
over the alphabet {my,ms, a1, as,a12}. Let L3 be the language consist-
ing of the set of such strings in which the protocol sketched above is
followed. Show that this is a regular set by providing an automaton and
showing that it accepts all and only the strings in Lj.

e.g.,
mMam1a2Ma02a11M1MM2012

MmoMmiaeM1G201M1M20A12

momi1a2MaG2G17M1 G201

A A M
&~
ot

MmoMmia2Ma02G1M 1Mo

