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1. Introduction 
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A language L is said to have the finite power property if there exists some positive 
integer n such that L* = ({A} u ~5)“. The problem of determining for which classes of 
languages the finite power property is decidable was first posed by J.A. Brzozowski in 
1966. Simon [4j has developed a decision procedure for the class of regular 
languages. Our major result is to prove that this problem is undecidable for the class 
of context-free languages. 

As a preliminary, we will first establish the Unsolvability of the conceptually easier 
probfem of testing if L = L2 for context-free Pianguages. 

Theorem 1. There is no eJkc;i’ce procedure for dececidkg whetherL = L2 for an arbitrary 
COI 1 text-free language L. 

Pruuf. The problem of deciding whether L = 2:” is known to be unsc!vable. (See, for 
instance [3, p. 2201.) We will show how to relduce this problem to the problem of 
deciding whether L = L2. 

Given ai. arbitrary context-free language L, we can certainly decide whether 
({A) u XI) c L, (because {A} u C is a finite set). If ((Al u Z) $ L, then L + Z*. But if 
({A) u Z) c L, then clearly L = C* if and only if L = L”. 

If L’= Lz; then f, has the finite power property, To show that the convene is not 
true, consider the coritext-free language L =(A, a, a3, a4, u5,. . .}. It is easily seen 
that LsL2 = L3. 
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In order to establish the und*:cidability of the finite power property, we will reduce 
the immortality problem for Turing machines, which is known to be undecidable, to 
our problem. An intermediate step in this reduction involves the uniform halting 
problem for Turing machines. 

2. Turing machines that udwmly halt 

Let T be an arbitrary Turing machine (TM). An instuntuneousdescri;,,tion (ID) of T 
is a (possibly infinite length) representation of T’s current state, tape position and 
tape contents. Representations involving tapes for which only a finite number of 
squares are -marked are called finite ID’s. 

A Turing machine T, with ID set ‘3, unifomzZy halts if there exists some n such that, 
for each finite ID C E %, T started at C halts execution after at most. ,‘t steps. T is 
immortal if there is an ID (possibly of infinite length) from which it will never halt; 
otherwise it is mortal. The result of this paper is achieved by reducing tl’le problem of 
deciding whethler or not a Turing machine uniformly halts to the problem of deciding 
whether or not a context-free language has the finite power property. Unsolvability 
of the finite power property then proceeds from the following. 

Theorem 2. l%e set of Turing machines which uniformly halt is recursively eni+:rrc; - 
able. 

Proof. Any TM which uniformly halts in at most n steps cannot scan a square more 
than n squares from the initial square scanned. Therefore, there exist only a finite 
number of initial ID’s to check in deciding if a TM halts in at most n steps, and the TM 
must be simulated for each such ID for at most n steps. 

We can use a dovetailing procedure which will simulate the enumerable set of 
TM’s to geuerate the subsets which uniformly halt in n steps, as n increases to 
infinity. 

Theorem 3. The Jet of immortal TM’s is not recursive. 

Proof. See [2]. 

Theorem 4. The :ici of mortal TM’s is equal to the set of TM’s which uniformly halt. 
Therefore, the set of TM’s which uniformly halt is not recursive. 

roof. Any TM which uniformly halts must clearly be mortal. 
Let T be a T:M which does not uniformly halt. If any finite ID does not lead to a 

halt, then clearly IF is immortal. Assume then that T does not uniformly halt but all 
finite ID’s cause it to halt, Let $5 be the set of all ID’s such that for each I E 9, when T 
starts in I it will eventually scan each square of the tape containing a symbol of I 
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before it scans a square not containing a symbol of L Let {sr, . . . , a,,,} be the states of 
T. We define a forest of m trees, one for each state of T, such that the jth tree has root 
qfi If lo, 1i E 9, and qi is a symbol of I0 and Ii, and Ii = aI0 or I1 = &-,a where u is a tape 
symbol, then IO is a parent of 11 in the /th tree. Note that when T starts in II, the 
square containing cr is scanned after every other square of II but before any square 
not in Il. Since T does not uniformly halt but every finite ID causes it to halt, at least 
one of the trees of t5e forest must be infinite. The degree of each vertex in each tree is 
finite (it is bounded by the number of tape symbols). By K&rig’s Infinity Lemma, at 
least one of the trees must have an infinite branch. Therefore, there exists an infinite 
ID which causes T to travel an infinite distance on the tape. It follows that T is 
immortal. 

3. Unsolvability of the finite power property 

Let T be an arbitrary Turing machine and let % be the set of finite ID’s of 7’. Ai;i ID 
C2 is said to be the immediate successor gf Cr in T if C’z is the ED occurring if T 
performs one step after being started at Ci. A sequence of finite ID’s Ci, C’z, . . . , CT,,, 

is called a trace (of length m) of T if, for each i, 1 s i cm, Ci+l is the immediate 
successor of Ci. T uniformly halts just in case ther? is sm-x .q such that no trace is of 
length greater than n. It is this property of traces that we use in order to construct a 
context-free language L having the finite power property if and only if T uniformly 
halts. 

Our language L uses as its alphabet all symbols appearing in ID’s of T plus the two 
special symbols 4 and 4. In defining L we make use of the notation CR to denote the 
reversal of a string C. That is, if C = ala2. . . a,,, then CR = a,,, . . . u2al. L is defined 
as follows: 

L1=Gw5kIcl, &;m, 

L2 = {c*$c: BG$C,R 4 . . . C&_,$C& $1 k 2 1 and, for some i =+ 1, Citi is 
not the immediate successor of 

ci39 

L=LruLp. 

L may easily be shown to be lcontext-free. (See, for example, [l].) 
Our analysis of L* is simplified by the fact that 

L; = {A}u L2 and LILz = L2Ll = Lz. 

Thus, 

Analyzing the definitions of L1 and L2 we see that 

L; n L2 = 0 (the empty set) 
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just in case there is some word 

C,$C,R tC$Cf$ . . . C&t-iS;C% 4 

in L; which word is not also in Lz. But then, this is so just in case there is some trace of 

length 2n. Clearly then, L has the finite power property if and only if ? uniformly 

halts. In summary 

“fieorem 5. The finite power propey ,For context-free languages is um.-L kuble. 
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