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Sets, Sequences, Relations, 
Cardinality, Proofs

This is review material.
I will not explicitly discuss these 

concepts and processes in class.



Sets
• Sets are unordered collections of distinct objects.
• Sets can be defined or specified in many ways:

– By explicitly enumerating their members or elements
e.g.  S = { a, b, c}
Note: If S' = { b, c, a}, then S and S' denote the same set (that is, S' = S)

– By specifying a condition for membership
S =  { x Î D |  P(x) }, reads "S is the set of all x in D such that P(x) is true"
P is called a "predicate" ( a function from set D to {true, false} )
E.g.  S = { x Î N	 (natural numbers) | x is a prime number }

• The empty set is denoted, Ø, and is the set with no members; that is,
Ø = { }. Also, the predicate, x Î Ø is always false!

• Multisets or Bags are unordered collections of objects where we keep 
track of repeated elements (usually with a count per element)
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More on Sets
• If S ¹ Ø, then there exists an x for which x Î S is true; this predicate is read 

"x is an element of S" or "x is a member of S".  The symbol  "Î" denotes the 
member relation. x Ï S is true when x is not in S. 

• We use normal set operation of union (A È B), intersection (A Ç B) and 
complement ~A (usually A with a bar on it).

• If  A and B are sets,  then we write "A Í B" to mean that A is a subset of B.  
This means that for all x Î A, x Î B.  Or, "x [x Î A Þ x Î B].

• The expression, ”A ⊊ B" means that A is a proper subset of B. 
Mathematically, "x [x Î A Þ x Î B] and $y [ y Î B and y ÏA]

• The cross (Cartesian) product of two sets A and B is denoted, A ´ B, and is 
the set defined as follows: A ´ B = { (a,b) |  a Î A and b Î B } .  "(a,b)" is an 
expression composed from elements, a,b, selected arbitrarily from sets A 
and B, respectively.  If A ¹ B, then A ´ B ¹ B ´ A.
Note: (a,b) is a sequence not a set. See next slide.
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Sequences
• While sets have no order and no repeated elements, 

sequences have order and can contain repeats at 
differing positions in the order.
– The set {5,2,5} = {5,2} = {2,5}
– The sequence (5,2,5) ¹ (2,5,5) ¹ (5,5,2) ¹ (5,2) ¹ (2,5)

• Actually, there is a notion of a multiset or bag that we 
sometimes use. It has no order, but repeated elements 
are allowed. Since position is irrelevant, we just record 
each unique elements with a count.

• We can talk about the k-th element of a sequence, but 
not of a set or multiset.

• Finite sequences are often called tuples. Those of length 
k are k-tuples. A 2-tuple is also called a pair.
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Relations

• A relation, r, is a mapping from some set A to 
some set B;
We write,  r: A ® B, and we mean that r assigns to every 

member of A a subset of B; that is, for every a Î A, 
r(a) Í B and r(a) ¹ Ø.

A relation, r, can also be defined in terms of the cross 
product of A and B: 
r Í A ´ B such that for every a Î A there is at least one 
b Î B such that (a, b) Î r.

• We say that a relation, r, from A to B is a partial relation if 
and only if for some a Î A,  r(a) = Ø = { }. 
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More on Relations
• A predicate or property is a function with range {TRUE, 

FALSE}
• A property with a domain of n-tuples An is an n-ary

relation
• Binary relations are common, and like binary functions, 

we use infix notations for them
• Let R be a binary relation on A2.  R is:

– Reflexive if " x Î a, x R x 
– Symmetric if x R y ® y R x
– Transitive if ( x R y, y R z ) ® x R z
– An equivalence relation if it is reflexive, symmetric and transitive
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Functions
• Functions are special types of relations.  Specifically, a relation

f: A® B, is said to be a (total) function from A to B if and only if,
for every a Î A, f(a) has exactly one element;  that is, |f(a)| = 1.

• If f is a partial function from A to B, then f may not be defined for every a Î A.  
In this case we write |f(a)| £ 1, for every a in A; note that |f(a)| = 0 if and only if 
f(a) = Ø, and we say the function is undefined at a. 
Note: Text calls the set of possible inputs a function’s domain. We will often 
use domain for the set of input values on which f is defined, referring to the 
input set as the universe of discourse. If a function is total (defined 
everywhere) then there is no terminology difference.

• A function, f, is said to be one-to-one (1-1) if and only if x ¹ y implies
f(x) ¹ f(y). A total function that is one-to-one is sometimes called an injection.

• A function, f: A® B, is said to be onto if and only if for every y Î B there is an 
x Î A such that y = f(x).  
Note: technically we should write {y} = f(x), since functions are relations, 
however, the more convenient and less baroque notation is used when 
dealing with functions.  Total functions that are onto are called surjections. 
Ones that are 1-1 and onto are called bijections.
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Ordinal and Cardinal Numbers
Definition. Ordinal numbers are symbols used to designate relative 

position in an ordered collection.  The ordinals correspond to the 
natural numbers: 0, 1, 2, … The set of all natural (ordinal) numbers 
is denoted, N. 
(Note: We adopt the notation that 0 is a natural number.)

A fundamental concept in set theory is the size of a set, S. We begin 
with a definition.

Definition. Let S be any set.  We associate with S, the unique symbol 
|S| called its cardinality. Symbols of this kind are called cardinal 
numbers and denote the size of the set with which they are 
associated.
|Ø| = 0 (the cardinal number defining the size of the empty set is 
the ordinal, 0)
If S = {0, 1, 2, 3, …, n-1}, for some natural number n>0, then |S|=n.
To summarize, the cardinality of any finite set (including the empty 
set) is simply the ordinal number that specifies the number of 
elements in that set.
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More on Cardinality
To determine the relative size of two sets, we need the following 

definitions:
Definition. If A and B are two sets, then |A| £ |B| if and only if there 

exists an injection, f, from A to B; f is a 1-1 function from A into B.
Definition. If A and B are two sets, then |A| = |B| if and only if |A| £ |B|

and |B| £ |A|. We may also say that |A| = |B| if and only if there is a 
bijection, f, from A to B; f is a 1-1 function from A onto B.

Definition. If A and B are two sets, then |A| < |B| if and only if |A| £ |B|
and |A| ¹ |B|.

Definition. A set S is said to be finite if and only if |S| Î N; otherwise, S 
is said to be infinite. A set S is said to be countable if and only if S is
finite or |S| = | N |; otherwise S is said to be uncountable. We 
discuss cardinality in more details later.
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Infinities
By the definitions above, there are many infinite 

sets with which you are familiar.
For example:
N (the set of Natural numbers), Z (the set of 
Integers), Z+ (the set of Positive Integers), Q (the 
set of Rational numbers) and R (the set of Real 
numbers).

But, are all these infinite sets the same size?? 
Brash statement: |N	| = |Z+| = |Z	| = |Q	| < |R	|.
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Power Set
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Definition.  Let S be a set, then the power set of S, denoted 
P(S) or 2S, is defined by
P(S) = { A |  A Í S }.

Examples.
P(Ø)           = {Ø},
P( {1,2,3} ) = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
P(N) = {Ø, {0}, {1}, {2}, {3}, …

, {0,1}, {0,2}, {0,3}, …
, {0,1,2}, …

… { N } }



Cantor and Infinities
The previous “brash” statement suggests there are at least two infinite 

cardinals, |N	| and |R	|.  Furthermore, |N	| is a countable cardinal and 
|R	| is an uncountable cardinal.  In fact, there are infinitely many 
distinct cardinal numbers representing infinite sets!

In addition to these facts, Cantor proved that there is a smallest infinite 
cardinal number. He designated this smallest infinite cardinal 
number, À0 , named “aleph-null”; aleph is a symbol in the Hebrew 
alphabet.  He further showed that given any cardinal number, Àk , 
there is a next smallest cardinal number, Àk+1.

Cantor was able to prove that | N		| = À0, and although many 
mathematicians believe that |R	| = À1, this has never been proven 
from the axioms of mathematical set theory.
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How Many Infinities?
• The theorem stated and proven next is due to Cantor 

and gives us a mechanism for defining two sets of 
distinctly different cardinality (one being strictly larger 
than the other).  By inductively applying Cantor’s 
theorem it follows that there are infinitely many cardinal 
numbers denoting the sizes of infinite sets.  Cantor’s 
theorem uses the power set of a given set.
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Cantor’s Theorem
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Theorem (Cantor).  Let S be any set.  Then |S| < |P(S)|.
Proof.  
Case1: Suppose S = Ø. Then P(S) = {Ø}. Since |S| = 0 and |P(S)| = 1, the result holds.
Case2: Assume S ¹ Ø. 
(a) First we show that |S| £ |P(S)|.
To show this we must find an injection, f, from S to P(S).  
Consider f(x) = {x}.  Clearly, f(x) Î P(S) for all x ÎS. 
Furthermore, if x ¹ y, then f(x) = {x} ¹ {y} = f(y). 
Thus f is the desired function and we may conclude that |S| £ |P(S)|.
(b) Next we wish to show |S| ¹|P(S)|.  We do this by contradiction.
Assume |S| = |P(S)|, then by definition of equality of cardinal numbers, there is a 
function, f, that is 1-1 and onto from S to P(S).
Define Z = { x Î S | x Ï f(x) }. Clearly, Z is a subset (possibly empty) of S.
Therefore there is a y Î S such that f(y) = Z.  This follows from our assumption that f 
is onto P(S).  Then either y Î Z or y Ï Z.
(b.1)  Suppose y Î Z , then by definition of Z, y Ï f(y) = Z; a contradiction.
(b.2)  Suppose y Ï Z, then by definition of Z, y Î f(y) = Z; a contradiction.
Since the existence of f led to this logical absurdity, we must conclude that f cannot 
exist and thus |S| = |P(S)| is false. This establishes (b).

(a) and (b) together imply |S| < |P(S)|.



Corollaries
• If |S| = | N		|, then |P(S)| > | N		| = À0 .

• There are sets whose cardinalities are greater than 
À0. These sets are uncountably infinite, whereas 
those that correspond to N are countably infinite. 

• Note that a set can be countable and yet there is no 
effective way to describe its correspondence with N	. 
Look back and you will see that the definition just 
says that an injective function exists, not that this 
function is actually computable.
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Cardinalities of Z and Q	
1. We show that | N	 | = | Z |.

| N	 | £ | Z |: Define g: N® Z as follows: g(i) = i
| Z | £ | N	 |: Define  f: Z® N as follows: 

2. To show | N	 | = | Q | we develop the proof in two steps:
(a) Lemma – prove that |A| £ |S| for every subset A of S.

Note: This is what we did for | N	 | £ | Z |

(b) Prove that | N ´ N	 | = | N		|.
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|Subset| £ |Parent Set|
Lemma A.  |A| £ |S|, for every subset A of S.

Proof.  Let A be a subset of S.  To establish that |A| £ |S| 
we need to find a 1-1 function from A into S.  The identity 
function, f(x) = x, is the desired function; clearly, if x ¹ y, 
then f(x) = x ¹ y = f(y).  Since f(x) Î S, for every x in A, 
the lemma is proved.
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| N ´ N | = | N |
Lemma B.  | N ´ N | = | N |.
Proof. Let S = N ´ N = {(k,j) | k,j Î N	}.  Define the function, f((k,j)) = ((k+j)(k+j+1))/2 + j.

Clearly f is a function, since the defining expression is single-valued.
Furthermore, " k,j Î N	, f((k,j)) ³ 0. We must show that f is 1-1 and onto N.
To show f is 1-1, let (k, j) and (k', j') be two distinct elements of S.   
There are two cases to consider.  (a) k+j = k'+j', or (b) k+j < k'+j' (or k'+j' < k+j).
Assume (a). Then f((k,j)) – f((k',j')) = j – j' (we can assume without loss of generality 
that j-j' ³ 0). If j-j' = 0, then j = j'.  Thus k+j = k'+j' implies k = k', but this contradicts our 
assumption that (k,j) and (k',j') are distinct elements of S.  Thus, we must assume that 
j-j' > 0.  It follows immediately that f((k,j)) ¹ f((k',j').
Assume (b). Then we can assume k+j < k'+j' = k+j+a, for some a > 0. Now suppose 
f(k',j')) = f((k,j)).  Substituting k+j+a for k'+j' in the formula for f((k',j')) and equating to 
f((k,j)), and doing the algebra we arrive at j = aj + y, where y is some positive number. 
Clearly this relation cannot hold for any non-negative j and a > 0.  We must conclude 
that f((k,j)) ¹ f((k',j'). Thus, f is 1-1.
To show that f is onto N, we need to show that given any m ³ 0, there is a (k,j) such 
that f((k,j)) = m.  Let x be the largest non-negative integer such that x(x+1)/2 £ m.  It 
follows that (x+1)(x+2)/2 > m.  Now choose j = m - x(x+1)/2 and k = x-j.   It follows that 
f((k,j)) = m.

1/1/23 COT 6410 © UCF 19



Proof That | N | = | Q |
By definition, Q = { (a,b) | a Î Z and b Î Z+ } 

| Q | £ | N |. 
Q Í Z ´ N.  Thus | Q | £ | Z ´ N | by Lemma A.  
But | Z ´ N | = | N ´ N | using an argument similar to that 
showing | Z | = | N |. (Define g by g(a,b) = (f(a),b)) where f
is the function used to map Z to N.)
By Lemma B it follows that | Q | £ | N |.  

| N | £ | Q |.
Define f(a) = (a,1). This is a 1-1 mapping from N into Q, 
showing | Q | £ | N |. 

Thus, | N | = | Q |.
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Undirected Graphs
• An undirected Graph G is defined by a pair (V, E)
• V: Finite Set of Nodes/Vertices
• E: { <a,b> | a,b∈V are called Edges/Arcs}

– E⊆V×V such that <a,b>∈E implies <b,a>∈E
• Degree of node is number of edges at that node 

(number of nodes it relates to)
• Graphs can be labeled, as we did above on the nodes, 

or unlabeled. 
• Labels can go on nodes, edges or both.
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More on Graphs
• A subgraph H of a graph G is a subset of the nodes of G with all 

edges retained from G that involve node pairs in H.
• A path is a sequence of nodes connected by edges.
• A graph is connected if every two nodes are connected by a path.
• A cycle is a path that starts and ends in the same node.
• A simple cycle is a path that involves at least three nodes and 

starts and ends in the same node. (excludes self loop)
• A tree is a graph that is connected and has no simple cycles.
• A tree may contain a special node called the root.
• The nodes of degree 1 in a tree, excepting the root, are called 

leaves.
• The set of leaves of a tree are called the frontier.
• If the edges have direction then a graph is called directed
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Directed vs Undirected

• If directed, we differentiate in-degree
(edges into node) from out-degree 
(edges out of node).

• Undirected Directed
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Graph G = (V, E)
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Edges / Arcs

Nodes / VerticesUndirected

Directed

( , ) ( , )i j j iv v v v=

V: Finite Set of Nodes/Vertices
E: V×V ➝ V are Edges/Arcs

Tree has no simple cycles 
and often has a root



Alphabets and Strings
• DEFINITION 1.  An alphabet S is a finite, non-empty set 

of abstract symbols.
• DEFINITION 2. S*, the set of all strings over the 

alphabet, S, is given inductively as follows.
– Basis:  l Î S* ( the null string is denoted by l, it is the string of 

length 0, that is |l| = 0) [many texts use e but I avoid that as hate 
saying e Î A; it’s really confusing when manually written]
"a Î S, a Î S* (the members of S are strings of length 1, |a| = 1)

– Induction rule:  If  x Î S*, and a Î S, then  a×x Î S* and x×a Î S*. 
Furthermore, l×x = x×l = x, and |a×x| = |x×a| = 1+ |x|.

– NOTE: “a×x” denotes “a concatenated to x” and is formed by 
appending the symbol a to the left end of x.  Similarly, x×a, 
denotes appending a to the right end of x.  In either case, if x is 
the null string (l), then the resultant string is “a”.

– We could have skipped saying "a Î S, a Î S*, as this is covered 
by the induction rule with x = l.
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Languages
• DEFINITION 3.  Let S be an alphabet. A language over S is a subset, L, of 
S*.

• Example.  Languages over the alphabet S = {a, b}.
– Ø (the empty set) is a language over S
– S* (the universal set) is a language over S
– {a, bb, aba } (a finite subset of S*) is a language over S.
– { abnam | n = m2, n, m  ³ 0 } (infinite subset) is a language over S.

• DEFINITION 4.  Let L and M be two languages over S.  Then the
concatenation of L with M, denoted L×M is the set,
L×M = { x×y | x Î L and y Î M }
The concatenation of arbitrary strings x and y is defined inductively as 
follows. 
Basis:  When |x| £ 1 or |y| £ 1, then x×y is defined as in Definition 2. 
Inductive rule: when |x| > 1 and |y| > 1, then x = x’ × a for some a Î S and x’ Î S*, 
where |x’| = |x|-1.  Then x×y = x’×(a×y).
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Operations on Strings
• Let s, t be arbitrary strings over S

– s = a1 a2 … aj , j ³ 0, where each ai Î S
– t = b1 b2 … bk , k ³ 0, where each bi Î S

• length: |s| = j ; |t| = k 
• concatenate: = s×t = st = 

a1 a2 … aj b1 b2 … bk ; |st| = j+k
• power: sn = ss … s (n times) Note: s0 = l
• reverse: sR = aj aj-1 … a1
• substring: for s = a1 a2 … aj , any ap ap+1 … aq

where 1£p£q£j or l
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Properties of Languages
• Let L, M and N be languages over S, then:

– Ø×L = L×Ø = Ø
– {l}×L = L×{l} = L
– L×(M È N) = L×M È L×N  and (M È N) ×L = M×L È N×L

• Concatenation does NOT distribute over intersection.
– L0 = {l}  (definition)
– Ln+1 = LLn = LnL, n ³0. (definition)
– L+ = L1 È L2 È … Ln …  (definition) 
– L* = L0 È L1 È L2 È … Ln …  (definition) = L0 È L+
– (L*)* = L*
– (LM)*L = L(ML)*
– (L* × M*)* = (L* È M*)* = (L È M)*
– (L0 È L1 È L2 È … Ln)L* = L*, for all n ³0.
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Recognizers and Generators
1. When we discuss languages and classes of languages, we discuss 

recognizers and generators
2. A recognizer for a specific language is a program or computational model 

that differentiates members from non-members of the given language
3. A portion of the job of a compiler is to check to see if an input is a legitimate 

member of some specific programming language – we refer to this as a 
syntactic recognizer

4. A generator for a specific language is a program that generates all and only 
members of the given language

5. In general, it is not individual languages that interest us, but rather classes 
of languages that are definable by some specific class of recognizers or 
generators

6. One type of recognizer is called an automata and there are multiple classes 
of automata

7. One type of generator is called a grammar and there are multiple classes of 
grammars

8. Our first journey will be through automata and grammars 
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Terminology
• Definitions describe the mathematical objects and ideas 

we want to work with
• Statements or assertions are things we say about 

mathematics; they can be true or false
• Proofs are unassailable logical demonstrations that 

statements are true
• Theorems are statements that have been proven true
• Lemmas are theorems that are not interesting on their 

own but are useful for proving other theorems
• Corollaries are follow-on theorems that are easy to 

prove once you prove their parent theorems
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Types of Proofs
• Direct Argument

– Use assertions from theorem 
statement, known true properties 
and valid rules of inference

• Construction
– Prove something exists by showing 

how to make it – a specific type of 
construction is a reduction (used 
frequently here to show one 
problem can be reduced to 
another)

• Contradiction
– Prove something is true by showing 

it can’t be false
– One specific kind of proof by 

contradiction uses a technique 
called diagonalization

• Weak Induction
– Show that a statement is true for some 

base case (often 0 or 1)
– Show that if it’s true for the case of 

some i ≥ base case, it’s also true for 
the case of i + 1

• Strong Induction
– Show that a statement is true for some 

base case (often 0 or 1)
– Show that if it’s true for all cases 

where ≤ i, where i ≥ base case, it’s 
true for the case of i + 1



Sample Proof by Induction
Prove, if n is a positive whole number and n>4, then 2n≥ n2 .  Hint: use 
induction with a base of n=4.

Proof by Induction:
Base Case: n = 4:  24≥ 42 since 16 ≥ 16.
Induction Hypothesis:  Assume 2k≥ k2, for some k ≥ 4.
Induction Step:  Prove 2(k+1)  ≥ (k+1)2

First, we observe that k2 ≥ 2k+1 when k ≥ 3. 
Consider k=m+1, where k ≥ 3; and so m ≥ 2 
k2 = (m+1)2 = m2 + 2m+1 ≥ 4 + 2m+1 > 2m+3 = 2(m+1) + 1 = 2k+1.

Using this,
2(k+1)  = 2k * 2 = 2k+2k ≥ k2 + k2 ≥ k2 + 2k + 1 = (k+1)2

QED
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Sample Proof by Contradiction
Prove, if p and q are distinct prime numbers, then Ö(p/q) is irrational. 
Assume Ö(p/q) is rational where p and q are distinct primes. Let a/b be 
the reduced fraction (no common prime factors) that equals Ö(p/q).

Ö(p/q)  =  a/b : assumption (note a≠b, as p≠q)
p/q = a2/b2 : square both sides
p = a2 and q = b2 : since p and q have no common prime

factors, and a and b have no 
common prime factors. 

But this is not possible because p and q are prime numbers and so 
cannot have multiple factors (e.g., a×a, in the case of p). This 
contradicts our original assumption that Ö(p/q) is rational, so it must be 
irrational. QED

1/1/23 COT 6410 © UCF 33



Practice Problems
Practice
1. Prove or disprove that, for sets A and B, 

A=B if and only if (A Ç ~ B) È (A Ç B) = A.
2. Prove the following:

For non-empty sets A and B, (AUB)=(A∩B) if and only if A=B
What is the case is one or both are empty?

3. Prove: If S is any finite set with |S| = n, then 
|S´S´S | ≤ |P(S)|, for all n³N, where N is some constant, the minimum value of 
which you must discover and use as the basis for your proof.

4. Consider the function pair: N ´ N ® N
defined by pair(x,y) = 2x ( 2y + 1) – 1 
Show that pair is a bijection (1-1 onto N).
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