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Constant time: 
Not amenable to Rice’s



Constant Time
• CTime = { M | $K [ M halts in at most K steps 

independent of its starting configuration ] }
• RT cannot be shown undecidable by Rice’s Theorem as 

it breaks property 2
– Choose M1 and M2 to each Standard Turing Compute (STC) 

ZERO
– M1 is R (move right to end on a zero)
– M2 is L R R (time is dependent on argument)
– M1 is in CTime; M2 is not , but they have same I/O behavior, so 

CTime does not adhere to property 2
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Quantifier Analysis
• CTime = { M | $K "C [ STP(M, C, K) ] }
• This would appear to imply that CTime is not 

even re. However, a TM that only runs for K 
steps can only scan at most K distinct tape 
symbols. Thus, if we use unary notation, CTime
can be expressed

• CTime = { M | $K "C|C|≤K [ STP(M, C, K) ] }
• We can dovetail over the set of all TMs, M, and 

all K, listing those M that halt in constant time.
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Mortal Turing Machines
• A TM, M, is mortal if it halts on all initial IDs, 

whether the tape is finitely or infinitely marked. 
• A TM is immortal if it is not mortal, that is, if 

there some starting configuration, with the tape 
either finitely or infinitely marked, on which it 
does not halt

• The possibility of infinitely marked tapes is 
essential to the idea of mortality
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Uniform Halting
• A TM, M, uniformly halts if it halts when started 

in any configuration, C.
• Unlike HALT, this does not limit us to initial 

configurations, e.g., ones that start in the initial 
state with the arguments to the left.

• Note that this concept is restricted to normal 
TMs that start with a finitely marked tape.
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CTime Again
• A TM, M, Uniformly Halts in Constant Time if 

there is some n, dependent only on M, such that M
halts in at most n steps no matter what initial finite 
input it is given.

• Note that this concept is restricted to normal TMs 
that start with a finitely marked tape but is not limited 
to those that start in some initial configuration, e.g., 
the initial state with the arguments to the  left.

• Clearly, this class of machines includes those that 
start in an initial configuration.
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Infinite Tape Markings
• If a TM halts for all tape markings, even if the TM’s initial 

tape is infinitely marked, then there is some fixed 
maximum amount of the tape that the machine can 
traverse.

• Why is the above so?
• Well, informally, if there was no bound built into the TM’s 

table then it would be at the mercy of its data to decide 
when to stop. Thus, for instance, it would lead to the 
existence of an input such that a search for a zero (a 
divider between items on the tape) would take an infinite 
amount of time.
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Complexity of CTime
• Wish to show it is equivalent to the Mortality Problem for 

TM’s with Infinite Tapes (not unbounded but truly infinite 
and potentially infinitely marked)

• This was shown in 1966 to be undecidable*.
• Surprisingly, the Mortality Problem is re/non-recursive, 

even though the mortality problem for TMs restricted to 
finite initial tape markings (TOTAL) is not even re.

• Note that there is an analogy here because CTime seems 
non-re but we have seen it is re using quantification with a 
bounded “for all” quantifier.

*P.K. Hooper, The undecidability of the Turing machine immortality 
problem, J. Symbolic Logic 31 (1966) 219-234.
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CTime is RE
Theorem 1. The set of Turing machines which uniformly halt in 
constant time (CTime) is recursively enumerable
Proof. Any TM which uniformly halts in at most K steps cannot scan a 
square more than K squares from the initial scanned square. 
Therefore, there exist only a finite number of ID’s to check in deciding if 
a TM halts in at most K steps, and the TM must be simulated for each 
such ID for at most K steps. We can use a dovetailing procedure which 
will simulate the enumerable set of TM’s to generate the subsets which 
uniformly halt in K steps, as K increases to infinity.

Theorem 2. The set of Immortal TMs is re, non-recursive.
Proof. Shown by Hooper.
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T ∈ CTime⇒ T ∈ Mortal
Theorem 3. Let T be a TM in CTime then T is Mortal.
Proof. This is obvious as Mortality includes TMs with finitely or 
infinitely marked tapes.
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T ∈ Mortal ⇒ T ∈ CTime #1
Theorem 4. Let T be a TM in Mortal then T is in CTime.
Proof: We approach this by contradiction (T ∉ CTime ⇒ T ∉ Mortal).
Assume T ∉ CTime then there is either some finite ID that does not 
lead to a halt or some finite ID for which there is no a priori upper 
bound on the number of steps taken before halting. If any finite ID does 
not lead to a halt, then clearly T is immortal. We need then consider 
only infinite IDs and unbounded computations.
Let I be the set of all ID’s such that, for each I Î I, when T starts in I it 
will eventually scan each square of the tape containing a symbol of I
before it scans a square not containing a symbol of I. 
Let {q1, … , qm} be the states of T. We define a forest of m trees, one 
for each state of T, such that the j-th tree has root qj. The direct 
descendants of qj are qj0 and qj1, representing the shortest IDs 
involving qj.
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T ∈ Mortal ⇒ T ∈ CTime #2
If I0, I1 Î I, and qj is a symbol of I0 and I1, and I1 = s I0 or I1 = I0 s
, where s is a tape symbol, then I0 is a parent of I1 in the j-th
tree. 
Note that when T starts in I1, the square containing s is scanned 
after every other square of I1 but before any square not in I1.
Based on prior considerations, we know that T is immortal and 
that, for every finite ID, T either halts or runs for an unbounded 
number of steps and eventually halts. In the latter case T cannot 
stay within a bounded region of the tape as that would result in a 
loop. Thus, in both cases (non-halting or no bound), at least one 
of the trees of the forest must have an unbounded number of 
nodes. 
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T ∈ Mortal ⇒ T ∈ CTime #3
Continuing:
As the degree of each vertex in each tree is finite (it is bounded by the 
number of tape symbols), by Koenig's Infinity Lemma, at least one of 
the trees must have an infinite branch. Therefore, there exists an 
infinite ID that causes T to travel an infinite distance on the tape. It 
follows that T is immortal.
This shows if T is not in CTime then T is also not in Mortal and hence 
Mortal ⇒ CTime.
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Complexity of CTime (finally)
Theorem 5. T ∈ Mortal ⇔ T ∈ CTime.
Proof. Follows from Theorems 3 and 4.

Theorem 6. CTime is re, non-recursive.
Proof. Follows from Theorems 2 and 5.
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Finite Convergence for 
Concatenation of Context-Free 

Languages
Relation to Real-Time 

(Constant Time) Execution



Powers of CFLs
Let G be a context free grammar.
Consider L(G)n

Question1: Is L(G) = L(G)2?
Question2: Is L(G)n = L(G)n+1, for some 

finite n>0?
These questions are both undecidable.
Question1 is as hard as whether or not L(G)

is S*. 
Question2 requires much more thought.
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L(G) = L(G)2?

• The problem to determine if L = S* is Turing 
reducible to the problem to decide if 
L • L Í L, so long as L is selected from a class 
of languages C over the alphabet S for which we 
can decide if S È {l} Í L. 

• Corollary 1:
The problem “is L • L = L, for L context free or 
context sensitive?” is undecidable 
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L(G) = L(G)2? is undecidable

• Question: Does L • L get us anything new?
– i.e., Is L • L = L?

• Membership in a CFL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L 

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (2)
– the equality part is by definition of *
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Finite Power Problem
• The problem to determine, for an arbitrary 

context free language L, if there exist a finite n
such that Ln = Ln+1 is undecidable.

• Let M be some Turing Machine
• L1 = { C1# C2

R $ | C1, C2 are configurations },
• L2 = { C1#C2

R$C3#C4
R$  … $C2k-1#C2k

R$ | where 
k ³ 1 and, for some i, 1 £ i < 2k, Ci ÞM Ci+1 is 
false },

• L = L1 È L2 È {l}.
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Undecidability of $n Ln = Ln+1

• L is context free. 
• Any product of L1 and L2, which contains L2 at least once, 

is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 = L2.  
• This shows that (L1 È L2)n = L1

n È L2. 
• Thus, Ln = {l} È L1 È L1

2 …  È L1
n È L2. 

• Analyzing L1 and L2 we see that L1
n È L2 ¹ L2 just in 

case there is a word C1 # C2
R$ C3 # C4

R $…C2n-1 # C2n
R $

in L1
n that is not also in L2. 

• But then there is some valid trace of length 2n. 
• L has the finite power property iff M executes in constant 

time independent of its starting configuration (is in 
CTime).
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Undecidability of Finite 
Convergence for Operators on 

Formal Languages
Relation to Real-Time 

(Constant Time) Execution
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Simple Operators
• Concatenation

– A • B = { xy | x Î A & y Î B }

• Insertion
– A w B = { xyz |  y Î A, xz Î B, x, y, z Î S*}
– Clearly, since x can be l, A • B Í A w B
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Subsuming •
• Let Å be any operation that subsumes 

concatenation, that is A • B Í A Å B. 
• Simple insertion is such an operation, 

since A • B Í A w B. 
• Unconstrained crossover also subsumes •

A Äc B = { wz, yx | wxÎA and yzÎB}

4/10/23 © UCF CS



25

L = L Å L ?
• Theorem: 

The problem to determine if L = S* is 
Turing reducible to the problem to decide if 
L Å L Í L, so long as 
L • L Í L Å L and L is selected from a 
class of languages C over S for which we 
can decide if 
S È {l} Í L. 
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Proof #2
• Question: Does L Å L get us anything new?

– i.e., Is L Å L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L Å L = L (use notation LÅ

n = LÅ
n-1 Å L, n>0, LÅ

0= {l}
• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 LÅ

n Í L
– first inclusion follows from (1); second from (1), (2) and 

the fact that L • L Í L Å L
– equality is by definition of the * operator
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Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation are 

used in biomolecular computing and 
dynamical systems

• Shuffle (shown at end of these notes but not 
discussed in class) is used in analyzing 
concurrency as the arbitrary interleaving of 
parallel events

• Crossover is used in genetic algorithms
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Quotients of CFLs



Quotients of CFLs (Trace-Like 
Sequences)

Let L1 =  L( G1 ) = 
{ $ # Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length 
computation.
Now, let L2 = L( G2 ) =

{X0  $ # X0 # X1 # X2 # X3 # … # X2k #  Z0 #}
where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting 
configuration.
This checks the odd/steps of an even length terminating 
computation and includes an extra copy of the starting 
number prior to its $.
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If a Turing Machine Trace
Let L1 =  L( G1 ) = { $ # Y0

R # Y1 # Y2
R # Y3 # … # Y2j

R # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length computation.

Now, let L2=L( G2 )=
{X0 $ # X0

R # X1 # X2
R # X3 # … # X2k

R #  Z0 #}
where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting 
configuration.

This checks the odd/steps of an even length halting computation 
and includes an extra copy of the starting number prior to its $.
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Quotients of CFLs (results)
L1 =     { $ # Y0 # Y1 # Y2 # Y3 # Y4 # … #Y2k-1 # Y2j # Y2j+1 # }
L2 = {X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k#   Z0 #} 
Now, consider the quotient of L2 / L1 .  The only way a member of L1
can match a final substring in L2 is to line up the $ signs.  But then they 
serve to check out the validity and termination of the computation.  
Moreover, the quotient leaves only the starting point (the one on which 
the machine halts.)  Thus,

L2 / L1  = { X0 | the system being traced halts }.

Since deciding the members of an re set is in general undecidable, we 
have shown that membership in the quotient of two CFLs is also 
undecidable. 
Note: The Intersection of two CFLs is a CSL but the quotient of two 
CFLs is an re set and, in fact, all re sets can be specified by such 
quotients.
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Details of Traces as CSL
• Easiest starting point is not Turing 

Machines but rather FRS’s with Residue
• Rules are of form 

ax + b  ➝ cx + d
a, b, c, d are natural numbers, 
1≤b<a; 1≤d<c

• Can show that these systems do not 
require order as do FRS’s

• Residues can check for non-divisibility
4/10/23 © UCF CS 32



33

Traces of FRS with Residues
• I have chosen, once again to use the Factor Replacement Systems, 

but this time, Factor Systems with Residues.  
The rules are unordered and each is of the form
a x + b  ® c x + d

• These systems need to overcome the lack of ordering when 
simulating Register Machines.  This is done by
j. INCr[i] pn+j x ® pn+i pr x 
j. DECr[s, f] pn+j pr x ® pn+s x 

pn+j pr x + k pn+j ® pn+f pr x + k pn+f , 1 ≤ k <  pr
We also add the halting rule associated with m+1 of

pn+m+1 x ® 0 
• Thus, halting is equivalent to producing 0.  We can also add one 

more rule that guarantees we can reach 0 on both odd and even 
numbers of moves

0 ® 0
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Quotients of CFLs (precise)
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk) ) be some factor replacement 

system with residues.  Define grammars G1 and G2 by using the 4k+4 rules
G : Fi ® 1aiFi1ci |  1ai+bi#1ci+di 1 ≤ i ≤ k

T1 ® # Fi T1 |  # Fi # 1 ≤ i ≤ k
A ® 1 A 1 | $ #
S1 ® $T1
S2 ® A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y, 

L1 =  L( G1 ) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.  
This checks the even/odd steps of an even length computation.
But, L2 =  L( G2 ) = {X0 $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 Þ X2i , 1 ≤ i ≤ k and X = X0
This checks the odd/steps of an even length computation, and includes an 

extra copy of the starting number prior to its $.
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Summarizing Quotient
Now, consider the quotient L2 / L1 where L1
and L2 are the CFLs on prior slide.  The only 
way a member of L1 can match a final substring 
in L2 is to line up the $ signs.  But then they 
serve to check out the validity and termination of 
the computation.  Moreover, the quotient leaves 
only the starting number (the one on which the 
machine halts.)  Thus,
L2 / L1  = { X | the system F halts on zero }. 
Since deciding the members of an re set is in 
general undecidable, we have shown that 
membership in the quotient of two CFLs is also 
undecidable.
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Undecidability of Finite 
Convergence for Lots of Other 

Operators
Relation to Real-Time 

(Constant Time) Execution
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K-insertion 
• A w [ k ] B = { x1y1x2y2 … xkykxk+1 |  

y1y2 … yk Î A, 
x1x2 … xkxk+1 Î B, 
xi, yj Î S*}

• Clearly, B • A Í A w [ k ] B , for all k>0
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Iterated Insertion
• A (1) w[ n ] B = A w[ n ] B

• A (k+1) w[ n ] B = A w[ n ] (A (k) w[ n ] B)
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Shuffle
• Shuffle (product and bounded product)

– A ¯ B = È j ³ 1 A w[ j ] B 
– A ¯[ k ] B = È 1£j£k A w[ j ] B = A w[ k ] B 

• One is tempted to define shuffle product as 
A ¯ B = A w[ k ] B where 

k = µ y [ A w[ j ] B = A w[ j+1] B ]
but such a k may not exist – in fact, we will show 
the undecidability of determining whether k
exists
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More Shuffles
• Iterated shuffle

– A ¯0 B = A
– A ¯k +1 B = (A ¯[ k ] B) ¯ B 

• Shuffle closure
– A ¯* B = È k ³ 0 (A ¯[ k ] B)
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Crossover
• Unconstrained crossover is defined by 

A Äu B = { wz, yx | wxÎA and yzÎB}

• Constrained crossover is defined by
A Äc B = { wz, yx | wxÎA and yzÎB, 

|w| = |y|, |x| = |z| }

4/10/23 © UCF CS



42

Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation are 

used in biomolecular computing and 
dynamical systems

• Shuffle is used in analyzing concurrency as 
the arbitrary interleaving of parallel events

• Crossover is used in genetic algorithms
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Some Known Results
• Regular languages, A and B

– A • B is regular
– A w [ k ] B is regular, for all k>0
– A ¯ B is regular
– A ¯* B is not necessarily regular 

• Deciding whether or not A ¯* B is regular is an 
open problem
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More Known Stuff
• CFLs, A and B

– A • B is a CFL
– A w B is a CFL
– A w [ k ] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2
• Trick is to consider (A w [ 2 ] B) Ç a*c*b*d*

– A ¯ B is not necessarily a CFL
– A ¯* B is not necessarily a CFL 

• Deciding whether or not A ¯* B is a CFL is an open problem
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Immediate Convergence

• L = L2 ?
• L = L wL ?
• L = L ¯ L ?
• L = L ¯* L ?
• L = L Äc L ?
• L = L Äu L ?
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Finite Convergence
• $k>0 Lk = Lk+1

• $k³0 L (k) w L = L (k+1) w L 
• $k³0 L w[ k ] L = L w[ k+1 ] L
• $k³0 L ¯k  L = L ¯k +1 L
• $k³0 L (k) Äc L = L (k+1) Äc L 
• $k³0 L (k) Äu L = L (k+1) Äu L 

• $k³0 A (k) w B = A (k+1) w B
• $k³0 A w[ k ] B = A w[ k+1 ] B 
• $k³0 A ¯k  B = A ¯k +1 B
• $k³0 A (k) Äc B = A (k+1) Äc B 
• $k³0 A (k) Äu B = A (k+1) Äu L 
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