
Complexity Theory
More Computability

Charles E. Hughes
COT6410 – Spring 2023 Notes

Constant time:
Not amenable to Rice’s

Constant Time
• CTime = { M | $K [M halts in at most K steps

independent of its starting configuration] }
• RT cannot be shown undecidable by Rice’s Theorem as

it breaks property 2
– Choose M1 and M2 to each Standard Turing Compute (STC)

ZERO
– M1 is R (move right to end on a zero)
– M2 is L R R (time is dependent on argument)
– M1 is in CTime; M2 is not , but they have same I/O behavior, so

CTime does not adhere to property 2

4/10/23 © UCF CS 3

Quantifier Analysis
• CTime = { M | $K "C [STP(M, C, K)] }
• This would appear to imply that CTime is not

even re. However, a TM that only runs for K
steps can only scan at most K distinct tape
symbols. Thus, if we use unary notation, CTime
can be expressed

• CTime = { M | $K "C|C|≤K [STP(M, C, K)] }
• We can dovetail over the set of all TMs, M, and

all K, listing those M that halt in constant time.

4/10/23 © UCF CS 4

Mortal Turing Machines
• A TM, M, is mortal if it halts on all initial IDs,

whether the tape is finitely or infinitely marked.
• A TM is immortal if it is not mortal, that is, if

there some starting configuration, with the tape
either finitely or infinitely marked, on which it
does not halt

• The possibility of infinitely marked tapes is
essential to the idea of mortality

4/10/23 © UCF CS 5

Uniform Halting
• A TM, M, uniformly halts if it halts when started

in any configuration, C.
• Unlike HALT, this does not limit us to initial

configurations, e.g., ones that start in the initial
state with the arguments to the left.

• Note that this concept is restricted to normal
TMs that start with a finitely marked tape.

4/10/23 © UCF CS 6

CTime Again
• A TM, M, Uniformly Halts in Constant Time if

there is some n, dependent only on M, such that M
halts in at most n steps no matter what initial finite
input it is given.

• Note that this concept is restricted to normal TMs
that start with a finitely marked tape but is not limited
to those that start in some initial configuration, e.g.,
the initial state with the arguments to the left.

• Clearly, this class of machines includes those that
start in an initial configuration.

4/10/23 © UCF CS 7

Infinite Tape Markings
• If a TM halts for all tape markings, even if the TM’s initial

tape is infinitely marked, then there is some fixed
maximum amount of the tape that the machine can
traverse.

• Why is the above so?
• Well, informally, if there was no bound built into the TM’s

table then it would be at the mercy of its data to decide
when to stop. Thus, for instance, it would lead to the
existence of an input such that a search for a zero (a
divider between items on the tape) would take an infinite
amount of time.

4/10/23 © UCF CS 8

Complexity of CTime
• Wish to show it is equivalent to the Mortality Problem for

TM’s with Infinite Tapes (not unbounded but truly infinite
and potentially infinitely marked)

• This was shown in 1966 to be undecidable*.
• Surprisingly, the Mortality Problem is re/non-recursive,

even though the mortality problem for TMs restricted to
finite initial tape markings (TOTAL) is not even re.

• Note that there is an analogy here because CTime seems
non-re but we have seen it is re using quantification with a
bounded “for all” quantifier.

*P.K. Hooper, The undecidability of the Turing machine immortality
problem, J. Symbolic Logic 31 (1966) 219-234.
4/10/23 © UCF CS 9

CTime is RE
Theorem 1. The set of Turing machines which uniformly halt in
constant time (CTime) is recursively enumerable
Proof. Any TM which uniformly halts in at most K steps cannot scan a
square more than K squares from the initial scanned square.
Therefore, there exist only a finite number of ID’s to check in deciding if
a TM halts in at most K steps, and the TM must be simulated for each
such ID for at most K steps. We can use a dovetailing procedure which
will simulate the enumerable set of TM’s to generate the subsets which
uniformly halt in K steps, as K increases to infinity.

Theorem 2. The set of Immortal TMs is re, non-recursive.
Proof. Shown by Hooper.

4/10/23 © UCF CS 10

T ∈ CTime⇒ T ∈ Mortal
Theorem 3. Let T be a TM in CTime then T is Mortal.
Proof. This is obvious as Mortality includes TMs with finitely or
infinitely marked tapes.

4/10/23 © UCF CS 11

T ∈ Mortal ⇒ T ∈ CTime #1
Theorem 4. Let T be a TM in Mortal then T is in CTime.
Proof: We approach this by contradiction (T ∉ CTime ⇒ T ∉ Mortal).
Assume T ∉ CTime then there is either some finite ID that does not
lead to a halt or some finite ID for which there is no a priori upper
bound on the number of steps taken before halting. If any finite ID does
not lead to a halt, then clearly T is immortal. We need then consider
only infinite IDs and unbounded computations.
Let I be the set of all ID’s such that, for each I Î I, when T starts in I it
will eventually scan each square of the tape containing a symbol of I
before it scans a square not containing a symbol of I.
Let {q1, … , qm} be the states of T. We define a forest of m trees, one
for each state of T, such that the j-th tree has root qj. The direct
descendants of qj are qj0 and qj1, representing the shortest IDs
involving qj.
4/10/23 © UCF CS 12

T ∈ Mortal ⇒ T ∈ CTime #2
If I0, I1 Î I, and qj is a symbol of I0 and I1, and I1 = s I0 or I1 = I0 s
, where s is a tape symbol, then I0 is a parent of I1 in the j-th
tree.
Note that when T starts in I1, the square containing s is scanned
after every other square of I1 but before any square not in I1.
Based on prior considerations, we know that T is immortal and
that, for every finite ID, T either halts or runs for an unbounded
number of steps and eventually halts. In the latter case T cannot
stay within a bounded region of the tape as that would result in a
loop. Thus, in both cases (non-halting or no bound), at least one
of the trees of the forest must have an unbounded number of
nodes.

4/10/23 © UCF CS 13

T ∈ Mortal ⇒ T ∈ CTime #3
Continuing:
As the degree of each vertex in each tree is finite (it is bounded by the
number of tape symbols), by Koenig's Infinity Lemma, at least one of
the trees must have an infinite branch. Therefore, there exists an
infinite ID that causes T to travel an infinite distance on the tape. It
follows that T is immortal.
This shows if T is not in CTime then T is also not in Mortal and hence
Mortal ⇒ CTime.

4/10/23 © UCF CS 14

Complexity of CTime (finally)
Theorem 5. T ∈ Mortal ⇔ T ∈ CTime.
Proof. Follows from Theorems 3 and 4.

Theorem 6. CTime is re, non-recursive.
Proof. Follows from Theorems 2 and 5.

4/10/23 © UCF CS 15

Finite Convergence for
Concatenation of Context-Free

Languages
Relation to Real-Time

(Constant Time) Execution

Powers of CFLs
Let G be a context free grammar.
Consider L(G)n

Question1: Is L(G) = L(G)2?
Question2: Is L(G)n = L(G)n+1, for some

finite n>0?
These questions are both undecidable.
Question1 is as hard as whether or not L(G)

is S*.
Question2 requires much more thought.
4/10/23 © UCF CS 17

L(G) = L(G)2?

• The problem to determine if L = S* is Turing
reducible to the problem to decide if
L • L Í L, so long as L is selected from a class
of languages C over the alphabet S for which we
can decide if S È {l} Í L.

• Corollary 1:
The problem “is L • L = L, for L context free or
context sensitive?” is undecidable

4/10/23 © UCF CS 18

L(G) = L(G)2? is undecidable

• Question: Does L • L get us anything new?
– i.e., Is L • L = L?

• Membership in a CFL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L • L = L

• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 Ln Í L

– first inclusion follows from (1); second from (2)
– the equality part is by definition of *

4/10/23 © UCF CS 19

Finite Power Problem
• The problem to determine, for an arbitrary

context free language L, if there exist a finite n
such that Ln = Ln+1 is undecidable.

• Let M be some Turing Machine
• L1 = { C1# C2

R $ | C1, C2 are configurations },
• L2 = { C1#C2

R$C3#C4
R$ … $C2k-1#C2k

R$ | where
k ³ 1 and, for some i, 1 £ i < 2k, Ci ÞM Ci+1 is
false },

• L = L1 È L2 È {l}.

4/10/23 © UCF CS 20

Undecidability of $n Ln = Ln+1

• L is context free.
• Any product of L1 and L2, which contains L2 at least once,

is L2. For instance, L1 • L2 = L2 • L1 = L2 • L2 = L2.
• This shows that (L1 È L2)n = L1

n È L2.
• Thus, Ln = {l} È L1 È L1

2 … È L1
n È L2.

• Analyzing L1 and L2 we see that L1
n È L2 ¹ L2 just in

case there is a word C1 # C2
R$ C3 # C4

R $…C2n-1 # C2n
R $

in L1
n that is not also in L2.

• But then there is some valid trace of length 2n.
• L has the finite power property iff M executes in constant

time independent of its starting configuration (is in
CTime).

4/10/23 © UCF CS 21

Undecidability of Finite
Convergence for Operators on

Formal Languages
Relation to Real-Time

(Constant Time) Execution

23

Simple Operators
• Concatenation

– A • B = { xy | x Î A & y Î B }

• Insertion
– A w B = { xyz | y Î A, xz Î B, x, y, z Î S*}
– Clearly, since x can be l, A • B Í A w B

4/10/23 © UCF CS

24

Subsuming •
• Let Å be any operation that subsumes

concatenation, that is A • B Í A Å B.
• Simple insertion is such an operation,

since A • B Í A w B.
• Unconstrained crossover also subsumes •

A Äc B = { wz, yx | wxÎA and yzÎB}

4/10/23 © UCF CS

25

L = L Å L ?
• Theorem:

The problem to determine if L = S* is
Turing reducible to the problem to decide if
L Å L Í L, so long as
L • L Í L Å L and L is selected from a
class of languages C over S for which we
can decide if
S È {l} Í L.

4/10/23 © UCF CS

26

Proof #2
• Question: Does L Å L get us anything new?

– i.e., Is L Å L = L?
• Membership in a CSL is decidable.
• Claim is that L = S* iff

(1) S È {l} Í L ; and
(2) L Å L = L (use notation LÅ

n = LÅ
n-1 Å L, n>0, LÅ

0= {l}
• Clearly, if L = S* then (1) and (2) trivially hold.
• Conversely, we have S* Í L*= È n³0 LÅ

n Í L
– first inclusion follows from (1); second from (1), (2) and

the fact that L • L Í L Å L
– equality is by definition of the * operator

4/10/23 © UCF CS

27

Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation are

used in biomolecular computing and
dynamical systems

• Shuffle (shown at end of these notes but not
discussed in class) is used in analyzing
concurrency as the arbitrary interleaving of
parallel events

• Crossover is used in genetic algorithms
4/10/23 © UCF CS

Quotients of CFLs

Quotients of CFLs (Trace-Like
Sequences)

Let L1 = L(G1) =
{ $ # Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }

where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length
computation.
Now, let L2 = L(G2) =

{X0 $ # X0 # X1 # X2 # X3 # … # X2k # Z0 #}
where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting
configuration.
This checks the odd/steps of an even length terminating
computation and includes an extra copy of the starting
number prior to its $.

4/10/23 29© UCF CS

If a Turing Machine Trace
Let L1 = L(G1) = { $ # Y0

R # Y1 # Y2
R # Y3 # … # Y2j

R # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.

Now, let L2=L(G2)=
{X0 $ # X0

R # X1 # X2
R # X3 # … # X2k

R # Z0 #}
where X2i-1 Þ X2i , 1 ≤ i ≤ k and Z0 is a unique halting
configuration.

This checks the odd/steps of an even length halting computation
and includes an extra copy of the starting number prior to its $.

4/10/23 30© UCF CS

Quotients of CFLs (results)
L1 = { $ # Y0 # Y1 # Y2 # Y3 # Y4 # … #Y2k-1 # Y2j # Y2j+1 # }
L2 = {X0 $ # X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 #}
Now, consider the quotient of L2 / L1 . The only way a member of L1
can match a final substring in L2 is to line up the $ signs. But then they
serve to check out the validity and termination of the computation.
Moreover, the quotient leaves only the starting point (the one on which
the machine halts.) Thus,

L2 / L1 = { X0 | the system being traced halts }.

Since deciding the members of an re set is in general undecidable, we
have shown that membership in the quotient of two CFLs is also
undecidable.
Note: The Intersection of two CFLs is a CSL but the quotient of two
CFLs is an re set and, in fact, all re sets can be specified by such
quotients.

4/10/23 31© UCF CS

Details of Traces as CSL
• Easiest starting point is not Turing

Machines but rather FRS’s with Residue
• Rules are of form

ax + b ➝ cx + d
a, b, c, d are natural numbers,
1≤b<a; 1≤d<c

• Can show that these systems do not
require order as do FRS’s

• Residues can check for non-divisibility
4/10/23 © UCF CS 32

33

Traces of FRS with Residues
• I have chosen, once again to use the Factor Replacement Systems,

but this time, Factor Systems with Residues.
The rules are unordered and each is of the form
a x + b ® c x + d

• These systems need to overcome the lack of ordering when
simulating Register Machines. This is done by
j. INCr[i] pn+j x ® pn+i pr x
j. DECr[s, f] pn+j pr x ® pn+s x

pn+j pr x + k pn+j ® pn+f pr x + k pn+f , 1 ≤ k < pr
We also add the halting rule associated with m+1 of

pn+m+1 x ® 0
• Thus, halting is equivalent to producing 0. We can also add one

more rule that guarantees we can reach 0 on both odd and even
numbers of moves

0 ® 0

4/10/23 © UCF CS

34

Quotients of CFLs (precise)
• Let (n, ((a1,b1,c1,d1) , … ,(ak,bk,ck,dk)) be some factor replacement

system with residues. Define grammars G1 and G2 by using the 4k+4 rules
G : Fi ® 1aiFi1ci | 1ai+bi#1ci+di 1 ≤ i ≤ k

T1 ® # Fi T1 | # Fi # 1 ≤ i ≤ k
A ® 1 A 1 | $ #
S1 ® $T1
S2 ® A T1 # 1z0 # Z0 is 0 for us

G1 starts with S1 and G2 with S2
• Thus, using the notation of writing Y in place of 1Y,

L1 = L(G1) = { $ #Y0 # Y1 # Y2 # Y3 # … # Y2j # Y2j+1 # }
where Y2i Þ Y2i+1 , 0 ≤ i ≤ j.
This checks the even/odd steps of an even length computation.
But, L2 = L(G2) = {X0 $ #X0 # X1 # X2 # X3 # X4 # … # X2k-1 # X2k# Z0 # }
where X2i-1 Þ X2i , 1 ≤ i ≤ k and X = X0
This checks the odd/steps of an even length computation, and includes an

extra copy of the starting number prior to its $.

4/10/23 © UCF CS

35

Summarizing Quotient
Now, consider the quotient L2 / L1 where L1
and L2 are the CFLs on prior slide. The only
way a member of L1 can match a final substring
in L2 is to line up the $ signs. But then they
serve to check out the validity and termination of
the computation. Moreover, the quotient leaves
only the starting number (the one on which the
machine halts.) Thus,
L2 / L1 = { X | the system F halts on zero }.
Since deciding the members of an re set is in
general undecidable, we have shown that
membership in the quotient of two CFLs is also
undecidable.

4/10/23 © UCF CS

Undecidability of Finite
Convergence for Lots of Other

Operators
Relation to Real-Time

(Constant Time) Execution

37

K-insertion
• A w [k] B = { x1y1x2y2 … xkykxk+1 |

y1y2 … yk Î A,
x1x2 … xkxk+1 Î B,
xi, yj Î S*}

• Clearly, B • A Í A w [k] B , for all k>0

4/10/23 © UCF CS

38

Iterated Insertion
• A (1) w[n] B = A w[n] B

• A (k+1) w[n] B = A w[n] (A (k) w[n] B)

4/10/23 © UCF CS

39

Shuffle
• Shuffle (product and bounded product)

– A ¯ B = È j ³ 1 A w[j] B
– A ¯[k] B = È 1£j£k A w[j] B = A w[k] B

• One is tempted to define shuffle product as
A ¯ B = A w[k] B where

k = µ y [A w[j] B = A w[j+1] B]
but such a k may not exist – in fact, we will show
the undecidability of determining whether k
exists

4/10/23 © UCF CS

40

More Shuffles
• Iterated shuffle

– A ¯0 B = A
– A ¯k +1 B = (A ¯[k] B) ¯ B

• Shuffle closure
– A ¯* B = È k ³ 0 (A ¯[k] B)

4/10/23 © UCF CS

41

Crossover
• Unconstrained crossover is defined by

A Äu B = { wz, yx | wxÎA and yzÎB}

• Constrained crossover is defined by
A Äc B = { wz, yx | wxÎA and yzÎB,

|w| = |y|, |x| = |z| }

4/10/23 © UCF CS

42

Who Cares?
• People with no real life (me?)
• Insertion and a related deletion operation are

used in biomolecular computing and
dynamical systems

• Shuffle is used in analyzing concurrency as
the arbitrary interleaving of parallel events

• Crossover is used in genetic algorithms

4/10/23 © UCF CS

43

Some Known Results
• Regular languages, A and B

– A • B is regular
– A w [k] B is regular, for all k>0
– A ¯ B is regular
– A ¯* B is not necessarily regular

• Deciding whether or not A ¯* B is regular is an
open problem

4/10/23 © UCF CS

44

More Known Stuff
• CFLs, A and B

– A • B is a CFL
– A w B is a CFL
– A w [k] B is not necessarily a CFL, for k>1

• Consider A=anbn; B = cmdm and k=2
• Trick is to consider (A w [2] B) Ç a*c*b*d*

– A ¯ B is not necessarily a CFL
– A ¯* B is not necessarily a CFL

• Deciding whether or not A ¯* B is a CFL is an open problem

4/10/23 © UCF CS

45

Immediate Convergence

• L = L2 ?
• L = L wL ?
• L = L ¯ L ?
• L = L ¯* L ?
• L = L Äc L ?
• L = L Äu L ?

4/10/23 © UCF CS

46

Finite Convergence
• $k>0 Lk = Lk+1

• $k³0 L (k) w L = L (k+1) w L
• $k³0 L w[k] L = L w[k+1] L
• $k³0 L ¯k L = L ¯k +1 L
• $k³0 L (k) Äc L = L (k+1) Äc L
• $k³0 L (k) Äu L = L (k+1) Äu L

• $k³0 A (k) w B = A (k+1) w B
• $k³0 A w[k] B = A w[k+1] B
• $k³0 A ¯k B = A ¯k +1 B
• $k³0 A (k) Äc B = A (k+1) Äc B
• $k³0 A (k) Äu B = A (k+1) Äu L

4/10/23 © UCF CS

