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Regular Languages

I Hope This is Mostly Review
Read Sipser or Aho, Motwani, and 

Ullman if not old stuff for you



Finite-State Automata
• A Finite-State Automaton (FSA) has only one 

form of memory, its current state. 
• As any automaton has a predetermined finite 

number of states, this class of machines is quite 
limited, but still very useful.

• There are two classes: Deterministic Finite-State 
Automata (DFAs) and Non-Deterministic Finite-
State Automata (NFAs)

• We focus on DFAs for now.
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Concrete Model of FSA
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x1 x2 x3 … Xn-1 xn

A = (Q,Σ,δ,q0,F): Deterministic Final State Automaton (DFA)
L = L(A) is a finite-state (regular) language over finite alphabet S
Each xi is a character in S
w = x1 x2 … xn is a string to be tested for membership in L

• Blue arrow above represents read head that starts on left.
• q0 ∈ Q (finite state set) is initial state of machine.
• Only action at each step is to change state based on 

character being read and current state. State change is 
determined by a transition function d: Q × S ➝ Q.

• Once state is changed, read head moves right. 
• Machine stops when head passes last input character.
• Machine accepts a string as a member of L if it ends up in 

a state from Final State set F ⊆ Q.

q0



Deterministic Finite-State 
Automata (DFA)

• A deterministic finite-state automaton (DFA) A is defined 
by a 5-tuple 
A = (Q,Σ,δ,q0,F), where
– Q is a finite set of symbols called the states of A
– Σ is a finite set of symbols called the alphabet of A
– δ is a function from Q×Σ into Q (δ: Q×Σ → Q) called 

the transition function of A
– q0∈Q is a unique element of Q called the start state
– F is a subset of Q (F ⊆ Q) called the final states (can 

be empty)
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DFA Transitions
• Given a DFA, A = (Q,Σ,δ,q0,F), we can definition the reflexive 

transitive closure of δ, δ*:Q×Σ* → Q, by
– δ*(q,l) = q where l is the string of length 0

• Some use ∊ rather than l as symbol for string of length zero
– δ*(q,ax) = δ*(δ(q,a),x), where a ∈ Σ and x ∈ Σ*
– Note that this means

δ*(q,a) = δ(q,a), where a ∈ Σ as a = al
– Also, if δ*(q,x) = p and δ*(p,y) = r then δ*(q,xy) = r 

• We also define the transitive closure of δ, δ+, by
– δ+(q,w) = δ*(q,w)  when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every step of computation by the 
automaton starting in some state until it runs out of characters to 
read
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Regular Languages and DFAs
• Given a DFA, A = (Q,Σ,δ,q0,F), we can define the 

language accepted by A as those strings that cause it to 
end up in a final state once it has consumed the entire 
string

• Formally, the language accepted by A is
– { w | δ*(q0,w) ∈ F }

• We generally refer to this language as L(A)
• We define the notion of a Regular Language by saying 

that a language is Regular if and only if it is accepted 
(recognized) by some DFA
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State Diagram
• A finite-state automaton can be described by a 

state diagram, where 
– Each state is represented by a node labelled with that 

state, e.g.,    q
– The start state has an arc entering it with no source, 

e.g.,      q0

– Each transition δ(q,a) = s is represented by a directed 
arc from node q to node s that is labelled with the 
letter a, e.g.,     q a s

– Each final state has an extra circle around its node, 
e.g.,      f
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Really Simple DFAs # 1,2
• Accept the Empty Set over Σ

A = ( {R, Σ, d, R, ∅), where d is defined by

• Accept Σ*
A = ( {A}, Σ, d, A, {A}), where d is defined by
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Σ

Σ

A

R



Sample DFAs # 3,4

1/30/23 UCF @ CS 10

E O
1

1

0 0

A = ( {E,O}, {0,1}, d, E, {O}), where d is defined by above diagram.
L(A) = { w | w is a binary string of odd parity }

A

A’ = ( {C,NC,X}, {00,01,10,11}, d’, C, {NC}), where d’ is defined by above 
diagram.
L(A’) = { w | w is a pair of binary strings where the bottom string is the 2’s 
complement of the top one, both read least (lsb) to most significant bit (msb) }

C NC11

00 01,10

A’

01,10

X

S

00,11



Sample DFA # 5
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A” = ( {0,1,2,3,4}, {0,1}, d”, 0, {2,3}), where d” is defined by above 
diagram. L(A”) = { w | w is a binary string that, read left to right (msb
to lsb), when interpreted as a decimal number divided by 5, has a 
remainder of 2 or 3 }

A”



Sample DFA # 6
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A”’ = ( {N,E,W,S}, {R,L}, d”’, N, {N}), where d”’ is defined by above diagram. 
L(A”’) = { w | w is a set of commands passed to a sentinel that starts facing 
North and changes directions R(ight)/clockwise or L(eft)/counterclockwise 
based on the corresponding input character. w must eventually lead the 
sentinel back to facing North }

N E
RA”’ S

R
LL

© UCF EECS

W
R

L

L

R



State Transition Table
• A finite-state automaton can be described by a state 

transition table with |Q| rows and |Σ| columns
• Rows are labelled with state names and columns with 

input letters
• The start state has some indicator, e.g., a greater than 

sign (>q) and each final state has some indicator, e.g., 
an underscore (f)

• The entry in row q, column a, contains δ(q,a)
• In general we will use state diagrams, but transition 

tables are useful in some cases (state minimization)
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Sample DFA # 7
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A’’’ = ( {0%5,1%5,2%5,3%5,4%5}, {0,1}, d’’’, 0, {3%5}), where d’’’ is defined 
by above diagram.
L(A’’) = { w | w is a binary string of length at least 1 being read left to right 
(msb to lsb) that, when interpreted as a decimal number divided by 5, has a 
remainder of 3 }

Really, this is better done as a state diagram similar to what you saw earlier 
but have put this up so you can see the pattern.

0 1
0 % 5 0 % 5 1 % 5
1 % 5 2 % 5 3 % 5
2 % 5 4 % 5 0 % 5
3 % 5 1 % 5 2 % 5
4 % 5 3 % 5 4 % 5

Accept State



Sample DFA # 8
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This checks a string to see if it’s a legal password. In our case, a legal
password must contain at least one of each of the following: lower case letter, 
upper case letter, number, and special character from the following set 
{@#$%^&}. No other characters are allowed 

A-Z a-z 0-9 @#$%^&
ð Empty A a 0 @

A A Aa A0 A@
a Aa a a0 a@
0 A0 a0 0 0@
@ A@ a@ 0@ @
Aa Aa Aa Aa0 Aa@
A0 A0 Aa0 A0 A0@
A@ A@ Aa@ A0@ A@
a0 Aa0 a0 a0 a0@
a@ Aa@ a@ a0@ a@
0@ A0@ a0@ 0@ 0@
Aa0 Aa0 Aa0 Aa0 Aa0@
Aa@ Aa@ Aa@ Aa0@ Aa@
A0@ A0@ Aa0@ A0@ A0@
a0@ Aa0@ a0@ a0@ a0@

Aa0@ Aa0@ Aa0@ Aa0@ Aa0@



FSAs and Applications
• A synchronous sequential circuit has

– Binary input lines (input admitted at clock tick)
– Binary output lines (simple case is one line)

• 1 accepts; 0 rejects input
– Internal flip flops (memory) that define state (n flip flops = 2n states)
– Simple combinatorial circuits (and, or, not) that combine current state 

and input to alter internal state
– Simple combinatorial circuits (and, or, not) that use state to determine 

output

• Think about FSA to recognize the string PAPAPAT 
appearing somewhere in a corpus of text, say with a 
substring PAPAPAPATRICK

• Comments about GREP and Lexical Analysis
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Complement of Regular Sets
• Let A = (Q,Σ,δ,q0,F) and let L = L(A) then 

w ∉ L(A) iff δ*(q0,w) ∉ F iff δ*(q0,w) ∊ Q-F 
• Simply create new automaton

AC = (Q,Σ,δ,q0,Q-F)
• L(AC) = { w | δ*(q0,w) ∊ Q-F } = 

{ w | δ*(q0,w) ∉ F } = 
{ w | w ∉ L(A) } 

• Choosing the right representation can make a very big 
difference in how easy or hard it is to prove some 
property is true
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Parallelizing DFAs
• Regular sets can be shown closed under many binary operations 

using the notion of parallel machine simulation
• Let A1 = (Q1,Σ,δ1,q0,F1) and A2 = (Q2,Σ,δ2,s0,F2) where 

Q1∩Q2 = Ø
• B = (Q1×Q2,Σ,δ3,<q0,s0>,F3) where

δ3(<q,s>,a) = < δ1(q,a), δ2(s,a) >, qÎQ1, sÎQ2, aÎΣ
• Union is F3 = (F1×Q2) ∪ (Q1×F2)
• Intersection is F3 = F1×F2

– Can also do by combining union and complement
• Difference is F3 = F1×(Q2 – F2) 

– Can also do by combining intersection and complement
• Exclusive Or is F3 = (F1×(Q2-F2)) ∪ ((Q1-F1)×F2)
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Reversal of L
• If x is a string over Σ and x = a1 a2 … an,

then xR (x reversed) = an … a2 a1
• If L is some language, then

LR = { xR | x ∈ L }
• Trying to show if L is Regular that LR is also 

Regular, using DFAs is problematic
• Could change start state to final, all final to start 

states and reverse all arcs 
that is, if δ(q,a) = p then δR(p,a) = q, but then 
the automaton is no longer deterministic
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Non-determinism NFA
• A non-deterministic finite-state automaton (NFA) A is 

defined by a 5-tuple 
A = (Q,Σ,δ,q0,F), where
– Q is a finite set of symbols called the states of A
– Σ is a finite set of symbols called the alphabet of A
– δ is a function from Q×Σe into P(Q) = 2Q  ; 

Note: Σe = (Σ∪{l}) 
δ: Q× Σe → P(Q) called the transition function of A; 

by definition q ∈ δ(q,l)
– q0∈Q is a unique element of Q called the start state
– F is a subset of Q (F ⊆ Q) called the final states
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Comments on NFAs
• A state/input (called a discriminant) can lead nowhere, 

one place or many places in an NFA; moreover, an NFA 
can jump between states without reading any input 
symbol

• For simplicity, we often extend the definition of 
δ: Q× Σe → P(Q) to a variant that handles sets of 
states, where 
δ: P(Q)× Σe → P(Q) is defined as 
δ(S,a) = ∪q∈S δ(q,a), where a ∈ Σe
if S=Ø, ∪q∈S δ(q,a) =Ø
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l-Closure
• Given an NFA, A = (Q,Σ,δ,q0,F), we can recursively 

define the l-Closure of δ, l-Closure:Q → P(Q) by
– q  ∈ l-Closure(q)
– If s ∈ l-Closure(q) then l-Closure(s) ⊆ l-Closure(q)

• We can then extend the l-Closure to work on sets so 
that l-Closure:P(Q) → P(Q) is defined by
– l-Closure(S) = ∪q∈S l-Closure(q) where S ⊆ Q
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NFA Transitions
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the 

reflexive transitive closure of δ, δ*: P(Q)×Σ* → P(Q), by
– δ*(S,l) = l-Closure(S) 
– δ*(S,ax) = δ*(l-Closure(δ(S,a)),x), where a ∈ Σ and x ∈ Σ*

• Note that δ*(S,ax) = ∪q∈S∪p∈l-Closure(δ(q,a)) δ*(p,x), 
where a ∈ Σ and x ∈ Σ*

• We also define the transitive closure of δ, δ+, by
– δ+(S,w) = δ*(S,w)  when |w|>0 or, equivalently, w ∈ Σ+

• The function δ* describes every “possible” step of 
computation by the non-deterministic automaton starting 
in some state until it runs out of characters to read
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NFA Languages
• Given an NFA, A = (Q,Σ,δ,q0,F), we can define the 

language accepted by A as those strings that allow it to 
end up in a final state once it has consumed the entire 
string – here we just mean that there is some accepting 
path

• Formally, the language accepted by A is
– { w | (δ*(l-Closure({q0}),w) ∩ F) ≠ Ø }

• Notice that we accept if there is any set of choices of 
transitions that lead to a final state
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Finite-State Diagram
• A non-deterministic finite-state automaton can 

be described by a finite-state diagram, except
– We now can have transitions labeled with l
– The same letter can appear on multiple arcs from a 

state q to multiple distinct destination states
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Equivalence of DFA and NFA
• Clearly every DFA is an NFA except that 

δ(q,a) = s becomes δ(q,a) = {s}, so any 
language accepted by a DFA can be 
accepted by an NFA.

• The challenge is to show every language 
accepted by an NFA is accepted by an 
equivalent DFA. That is, if A is an NFA, 
then we can construct a DFA A’, such that 
L(A’) = L(A).
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Constructing DFA from NFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA
• Let S be an arbitrary subset of Q.

– Construct the sequence seq(S) to be a sequence that contains 
all elements of S in lexicographical order, using angle brackets 
to indicate a sequence not a set. That is, if S={q1, q3, q2} then 
seq(S)=<q1,q2,q3>. If S=Ø then seq(S)=<>

• Our goal is to create a DFA, A’, whose state set contains 
seq(S), whenever there is some w such that S=δ*(q0,w)

• To make our life easier, we will act as if the states of A’ 
are ordered sets, knowing that we really are talking 
about corresponding sequences
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l-Closure
• As before, we define the l-Closure of a state q as the set of states 

one can arrive at from q, without reading any additional input.
• Formally l-Closure(q) = { t | t ∊ δ*(q,l) }
• We can extend this to S ∈ P(Q) by

l-Closure(S) = { t |t ∊ δ*(q,l), q ∈ S} = { t |t ∊ l-Closure(q),q ∈ S}
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A B C D E
1 l

0

1

0,1

λ

0

1

A:

State A B C D E

l-closure { A } { B , C } { C } { D, E } { E }



DFA from NFA

1/30/23 UCF @ CS 29

A BC BCDE
1 1

10

0
A:

φ

0,1
0

A B C D E
1 l

0

1

0,1

λ

0

1
A:

Here the DFA has fewer states but, in general, it can have as 
many as 2n states, where the NFA has n states.



Details of DFA
• Let A = (Q,Σ,δ,q0,F) be an arbitrary NFA
• In an abstract sense,

A’ = (<P(Q)>, Σ, δ’, <l-Closure({q0})>, F’), 
where P(Q) is the power set of Q, but we rarely need so 
many states (2|Q|) and we can iteratively determine those 
needed by starting at l-Closure({q0}) and keeping only 
states reachable from here

• Define δ’(<S>,a) = <l-Closure(δ(S,a))> = 
<∪q∈S l-Closure(δ(q,a))>, where a∈Σ, S ∈ P(Q)

• F’ = {<S> ∈ <P(Q)> | (S ∩ F) ≠ Ø }
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Regular Languages and NFAs
• Showing that every DFA can be simulated by an NFA 

that accepts the same language and every NFA can be 
simulated by a DFA that accepts the same language 
proves the following

• A language is Regular if and only if it is accepted 
(recognized) by some NFA

• We now have two equivalent classes of recognizers for 
Regular Languages
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Simple Exercise:
Convert from NFA to DFA

1/30/23 UCF @ CS 32

A aa B

a l

A
l DC

l



Regular Expressions

Regular Sets



Regular Expressions
• Primitive:

– Φ denotes {}
– λ denotes {λ} 
– a where a is in Σ denotes {a}

• Closure:
– If R and S are regular expressions then so are R ・ S, R + S and 

R*, where
• R ・ S denotes RS = { xy | x is in R and y is in S }
• R + S denotes RÈS = { x | x is in R or x is in S }
• R* denotes R* (defined in page 28 of preliminaries)

• Parentheses are used as needed
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Lexical Analysis
• Consider distinguishing variable names from keywords 

like 
– IF return(IFSY);
– INT return(INT);
– [a-zA-Z]([a-zA-Z0-9_])* return(IDENT);

• Equivalent to a+b+…+z, etc.

• This really screams for non-determinism
– With added constraints of finding longest/first match

• Non-deterministic automata typically have fewer states
• However, non-deterministic FSA (NFA) interpretation is 

not as fast as deterministic
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Regular Sets =
Regular Languages

• Show every regular expression denotes a 
language recognized by a finite-state 
automaton (can do deterministic or non-
deterministic)

• Show every Finite-State Automata 
recognizes a language denoted by a 
regular expression
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Every Regular Set is a 
Regular Language

• Primitive:
– Φ denotes { }
– λ denotes {λ} 
– a where a is in Σ denotes {a}

• Closure: (Assume that R’s and S’s states do not overlap)
– R ・ S start with machine for R, add l transitions from 

every final state of R’s recognizer to start state of S,
making final state of S final states of new machine

– R + S create new start state and add l transitions from new
state to start states of each of R and S, making union 
of R’s and S’s final states the new final states 

– R* add l transitions from each original final state of R back to its 
start state; keeping original start and making it only final state
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λ

aa



Every Regular Language is a 
Regular Set Using Rij

k

• This is a challenge that can be addressed in multiple ways. 
but I like to start with the Rij

k approach. Here’s how it works.
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qn}
• Rij

k = {w | δ*(qi,w) = qj, and no intermediate state visited 
between qi and qj, while reading w, has index > k

• Basis: k=0, Rij
0 = { a | δ(qi,a) = qj } sets are either Φ, λ, or 

elements of Σ, or λ + elements of Σ, and so are regular sets
• Inductive hypothesis: Assume Rij

m are regular sets for 
0 ≤ m ≤ k, 1 ≤ i,j ≤ n

• Inductive step: k+1, Rij
k+1 = (Rij

k + Rik+1
k ・ ( Rk+1k+1

k )* ・ Rk+1j
k)

• L(A) = +qf∈F R1f
n
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Convert to RE (Odd Parity)
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q2q1

1

1 00

R110= l+0 R120= 1 R220= l+0 R210= 1
R111= 0* R121= 0*1 R221= l+0+10*1 R211= 10*

R121= 1+(l+0)(l+0)*1 = 1+0*1 = 0*1
R221= l+0+1(l+0)*1 = l+0+10*1

R122= R121 + R121 (R221)* R221

L=R122= 0*1+0*1(l+0+10*1)*(l+0+10*1)=0*1(0+10*1)*
Why might a recursive rather than inductive approach be better?



Convert to RE
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q2 q3q1

0

11

0, 1

0 1



q2 q3q1

0

1
1

0, 1

0 1

• R110= l R120= 0 R130= f
• R210= 0 R220= l + 1 R230= 0 + 1
• R310= f R320= 1 R330= l + 1

• R111= l R121= 0 R131= f
• R211= 0 R221= l + 1 + 00 R231= 0 + 1
• R311 = f R321= 1 R331= l + 1

• R112= l + 0(1+00)*0 R122= 0(1+00)* R132= 0(1+00)*(0+1)
• R212= (1+00)*0 R222= (1+00)* R232= (1+00)*(0+1)
• R312= 1(1+00)*0 R322= 1(1+00)* R332= l+1+1(1+00)*(0+1)

• L = R12
3= 

0(1+00)* + 0(1+00)*(0+1) (1+1(1+00)*(0+1))* 1(1+00)*

THIS IS GREAT WAY TO GET FORMAL PROOF
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State Ripping Concept
• This is like the generalized automata approach you might see in 

Sipser and other places but with fewer arcs than text. It gets some of 
its motivation from Rij

k approach as well.
• Add a new start state and add a l–transition to existing start state
• Add a new final state qf and insert l–transitions from all existing final 

states to the new one; make the old final states non-final
• Excluding start and final states, successively pick states to remove
• For each state to be removed, change the arcs of every pair of 

externally entering and exiting arcs to reflect the regular expression 
that describes all strings that could result is such a double transition; 
be sure to account for loops in the state being removed. Also, or (+) 
together expressions that have the same start and end nodes

• When have just start and final, the regular expression that leads 
from start to final denotes the associated regular set
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State Ripping Details
• Let B be the node to be removed
• Let e1 be the regular expression on the arc from some node A to some 

node B (A≠B); e2 be the expression from B back to B (or l if there is no 
recursive arc); e3 be the expression on the arc from B to some other node 
C (C ≠B but C could be A); e4 be the expression from A to C

• Note that this just says, what if I allowed the path from A to C to include 
transitions through B, then what is new regular expression? The form is 
exactly what we saw in Rijk.
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A CB
e1

e2
e3

e4



State Ripping Details

• Erase the existing arcs from A to B and A to C, adding a new arc from A to 
C labelled with the expression
e4 + e1 e2* e3

• Note that all other arcs associated with A and C are untouched.
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A CB
e1

e2
e3

e4

A CB

e2

e4 + e1 e2* e3



State Ripping Details

• Do this for all nodes that have edges to B until B has no more entering. 
edges; at this point remove B and any edges it has to other nodes and itself

• Iterate until all but the start and final nodes remain.
• The expression from start to final describes the regular set that is equivalent 

to the regular language accepted by the original automaton.
• Note: Your choices of the order of removal make a big difference in how 

hard or easy this is.
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A CB

e2

e4 + e1 e2* e3



State Ripping (Odd Parity)
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q2q1

1

1 00

s f
λ λ

q2q1

0*1

1 00

s f
λ

Disconnect q1 from s

Disconnect q1 from q2

q20*1

1

0 + 10*1

s f
λ



State Ripping (Continued)
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1

Disconnect s from q2

0*1 (0 + 10*1)*
s f

q20*1

0 + 10*1

s f
λ

Got same regular expression as we saw with Rijk but what 
would happen if we ripped q2 and then q1? Try it. The 
expression will be different, but the set will be the same.



More Complex Case; Rip q3
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q2 q3q1

0

11

0+1

0 1

qf

l
l

q0

q2q1

0

0 1+(0+1)1+

qf

l
l

q0



Continued; Rip q1
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q2q1

0

0 1+(0+1)1+

qf

l
l

q0

q2
0

1+(0+1)1++00

qf

l

q0



Continued; Rip q2
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q2
0

1+(0+1)1++00

qf

l

q0

0 (1+(0+1)1++00)*
qfq0

L = 0 (1+(0+1)1++00)*



Regular Equations (Arden)
• Assume that R, Q and P are sets such that P 

does not contain the string of length zero, and R 
is defined by

• R = Q + RP
• We wish to show that
• R = QP*
• This is called “Arden’s Theorem/Lemma/Rule” 

(Google it!!)
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Show QP* is a Solution
• We first show that QP* is contained in R. By 

definition, R = Q + RP.
• To see if QP* is a solution, we insert it as the 

value of R in Q + RP and see if the equation 
balances.

• R = Q + QP*P = Q(λ+P*P) = Q(λ+P+) = QP*
• Hence QP* is a solution, but not necessarily the 

only solution.
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Uniqueness of Solution
• To prove uniqueness, we show that R is contained in QP*. 
• By definition, R = Q+RP = Q+(Q+RP)P 
• = Q+QP+RP2 = Q+QP+(Q+RP)P2

• = Q+QP+QP2+RP3

• ... 
• = Q(λ+P+P2+ ... +Pi)+RPi+1, for all i>=0
• Choose any w in R, where |w| = k. Then, from above,
• R = Q(λ+P+P2+ ... +Pk)+RPk+1

• but, since P does not contain the string of length zero, w is not in 
RPk+1. But then w is in

• Q(λ+P+P2+ ... +Pk) and hence w is in QP*.
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Reg. Eq. Process
• Let A = (Q,Σ,δ,q1,F) be a DFA 

• For each pair of states, A,B in Q, where for some input 
‘a’, δ(B,a) = A, include the term Ba in the right-side of the 
equation for A, that is, A = … + Ba
This just says that any solution for A must include the 
solution for B followed by an ‘a’.

• If A is the start state, then include λ as one of the terms 
as well, that is A = λ + … 
This just says that any solution for A must include λ
since A is the start state.
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Example
• We use the above to solve simultaneous regular equations. 

For example, we can associate regular expressions with 
finite-state automata as follows 

• Hence,
• For A, Q=l+B1; P=0

A = QP* = (l+B1)0*
= B10* + 0*

• B = B10*1 + B0 + 0*1  
For B, Q=0*1; P= B10*1 + B0 = B(10*1 + 0)

• and therefore
• B = 0*1(10*1 + 0)*  
• Note: This technique fails if there are self lambda transitions.
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Using Regular Equations
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B CA

0

11

0, 1

0 1

A = l + B0
B = A0 + C1 + B1
C = B(0+1) + C1; C = B(0+1)1*
B = 0 + B00 + B(0+1)1+ + B1
B = 0 + B (00+(0+1) 1+ + 1); B = 0(00 +(0+1)1+ + 1)* = 0 (1+(0+1)1++00)*

This is same form as with state ripping. It won’t always be so.



Use Reg. Eq. to Solve for D + E

A = λ ; B = A1 + C1 + E(0+1) + B0 ; C = B + C0 ; D = C1 ; E = D 
C = B0* 
D = C1 = B0*1; also, since E = D, E = B0*1 
B = A1 + C1 + E(0+1) + B0 = 1 + B0*1 + B0*1(0+1) + B0 = 1 + B0*1(0+1) + B(0*1 + 0) 

= 1(0*1(0+1) + 0*1 + 0)* 
C = B0* = 1(0*1(0+1) + 0*1 + 0)* 0*
D = C1 = 1(0*1(0+1) + 0*1 + 0)* 0*1 = 1(0*1(0+1+λ) + 0)* 0*1 = 1(0*1(0+1+λ) + 0)* 1
E = D so the language is denoted by 1(0*1(0+1+λ) + 0)* 1
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Practice NFAs
• Write NFAs for each of the following

– ( 111 + 000 )+

– (0+1)* 101 (0+1)+

– (1 (0+1)* 0) + (0 (0+1)* 1)
• Convert each NFA you just created to an 

equivalent DFA.
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DFAs to REs
• For each of the DFAs you created for the 

previous page, use ripping of states and 
then regular equations to compute the 
associated regular expression. Note: You 
obviously ought to get expressions that 
are equivalent to the initial expressions.

1/30/23 UCF @ CS 59



State Minimization

Minimum State DFAs



State Minimization
• Sipser text makes it an assignment on Page 299 in Edition 2.
• This is too important to defer, IMHO.
• First step is to remove any state that is unreachable from the start 

state; a depth first search rooted at start state will identify all 
reachable states

• One seeks to merge compatible states – states q and s are 
compatible if, for all strings x, δ*(q,x) and δ*(s,x) are either both an 
accepting or both rejecting states

• One approach is to discover incompatible states – states q and s are 
incompatible if there exists a string x such that one of δ*(q,x) and 
δ*(s,x) is an accepting state and the other is not

• There are many ways to approach this but my favorite is to do 
incompatible states via an n by n lower triangular matrix
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Sample Minimization
• This uses a transition 

table
• Just an X denotes

Immediately incompatible
• Pairs are dependencies 

for compatibility
• If a dependent is 

incompatible, so are pairs 
that depend on it

• When done, any not x--ed 
out are compatible

• Here, new states are 
<1,3>, <2,4,5>, <6>; 
<1,3> is start and not 
accept; others are accept

• Write new diagram
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Min DFA
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Closure Properties

Regular Languages



Reversal of Regular Sets
• It is easier to do this with regular sets than with NFAs
• Let E be some arbitrary expression; ER is formed by

– Primitives: ØR=Ø λR=λ aR=a
– Closure:

• (A ・ B)R = (BR ・ AR)
• (A + B)R = (AR + BR) 
• (A*)R = (AR)*

• Challenge: How would you do this with FSA models?
– Start with DFA; change all final to start states; change start 

to a final state; and reverse edges (now it’s an NFA)
– Note that this creates multiple start states; can create a 

new start state with l-transitions to multiple starts
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Substitution
• A substitution is a function, f, from each 

member, a, of an alphabet, Σ, to a language La

• Regular languages are closed under substitution 
of regular languages (i.e., each La is regular)

• Easy to prove by replacing each member of a∈Σ
in a regular expression for a language L with the  
regular expression for La

• A homomorphism is a substitution where each 
La is a single string
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Quotient with Regular Sets
• Quotient of two languages B and C, denoted B/C, is defined as 

B/C = { x | ∃y∈C where xy∈B }
• Let B be recognized by DFA 

AB = (QB,Σ,δB,q1B,FB) and C by 
AC = (QC,Σ,δC,q1C,FC)

• Define the recognizer for B/C by 
AB/C = (QB∪QB×QC,Σ,δB/C,q1B, FB×FC)
δB/C(q,a) = {δB(q,a)} a∈Σ,q∈QB
δB/C(q,l) = {<q,q1C>} q∈QB
δB/C(<q,p>,l) = {<δB(q,a),δC(p,a)>} a∈Σ,q∈QB,p∈QC

• The basic idea is that we simulate B and then randomly decide it 
has seen x and continue by looking for y, simulating B continuing 
after x but with C starting from scratch and both making believe they 
see the same character at every stage (none actually is seen) 
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Example of B/C via NFA
• Let B = a*b*; C = a+ 

• B/C = a* as C must remove at least one a and will not apply if there are any 
b’s

• AB = ({q1,q2,q3}, {a,b}, δB, q1, {q1,q2})
δB(q1,a) = q1; δB(q1,b) = q2; δB(q2,a) = q3; δB(q2,b) = q2;
δB(q3,a) = q3; δB(q3,b) = q3

• AC = ({s1,s2,s3}, {a,b}, δC, s1, {s2})
δC(s1,a) = s2; δC(s1,b) = s3; δC(s2,a) = s2; δC(s2,b) = s3;
δC(s3,a) = s3; δC(s3,b) = s3

• AB/C = ({q1,q2,q3,<q1,s1>,<q1,s2>,<q1,s3>,<q2,s1>>,<q2,s2>,<q2,s3>,
<q3,s1>,<q3,s2>, <q3,s3>} {a,b}, δB/C, q1, {<q1,s2>,<q2,s2>})
δB/C(q,c)  = {δB(q,c)}, q∈{q1,q2,q3}; c∈{a,b} // read ’x”
δB/C(q,λ)  = {<q,s1>}, q∈{q1,q2,q3}; // jump to synthesize y
δB/C(<q,s>,l) = {<δB(q,c),δC(s,c)>}, c∈{a,b},q∈{q1,q2,q3},s∈{s1,s2,s3},
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Example Worked Out #1
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Example Worked Out #2
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a a,b

q3

b

q1,s1 q2,s1 q2,s1

AB/C

λ λ λ

See next page



Example Worked Out #3
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q1,s1 q1,S2 q2,s3

The lambda subscripts indicate the make-believe characters we are”consuming”

λa

λa

λb
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λa,λb

λa

λb

λa
q3,s2

λb

λa

q3,s1

λa

q2,s1

λb

λb



Quick State Reduction
• We had the possibility of 3 + 9 = 12 states
• Only 7 were reachable from start
• Of these, only three can lead to a final 

state
q1, <q1,s1>, <q1,s2>

• We will need a dead state for all other 
paths, so let’s look at what we have, 
having done some obvious reductions
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Reduced NFA
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q1 q1,s1 q1,s2
λ λ

λ

dead

a,b

λ
a

b

Lambda Removal

q1
b

dead

a,b
a

start

Min machine for a* over alphabet {a,b}



Implications of Quotient
• PREFIX(L) = { x |∃y∈Σ* where xy∈L } = 

L / Σ*
• SUFFIX(L) = { y |∃x∈Σ* where xy∈L } =

(LR / Σ*)R

• SUBSTRING(L) = { y |∃x,z∈Σ* where xyz∈L } =
PREFIX(SUFFIX(L)) =
SUFFIX(PREFIX(L))

• So, Regular Languages (Sets) are closed under Prefix, 
Suffix, and Substring

• But is there a strategy that encompasses quotient and all 
above and may work for other classes of languages?
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Quotient Again
• Assume some class of languages, C, is closed 

under concatenation, intersection with regular 
and substitution of members of C, show C is 
closed under Quotient with Regular

• L/R = { x |∃y∈R where xy∈L }, R and L over Σ
– Define Σ’ = { a’ | a∈Σ }
– Let h(a) = a; h(a’) = l where a∈Σ
– Let g(a) = a’ where a∈Σ
– Let f(a) = {a,a’} where a∈Σ
– L/R = h( f(L) ∩ ( Σ* ・ g(R) ) )
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Applying Meta Approach
• INIT(L) = PREFIX(L) = { x |∃y∈Σ* where xy∈L }

– INIT(L) = h( f(L) ∩ ( Σ* ・ g(Σ*) ) )
– Also INIT(L) = L / Σ*

• LAST(L) = SUFFIX(L) = { y |∃x∈Σ* where xy∈L }
– LAST(L) = h( f(L) ∩ ( g(Σ*) ・ Σ* ) )

• MID(L) = SUBSTRING(L) =
{ y |∃x,z∈Σ* where xyz∈L }

• MID(L) = h( f(L) ∩ ( g(Σ*) ・ Σ* ・ g(Σ*) ) )
• EXTERIOR(L) = { xz |∃y∈Σ* where xyz∈L }

– EXTERIOR(L) = h( f(L) ∩ ( Σ* ・ g(Σ*) ・ Σ* ) )
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Substitution Examples
• Consider alphabet {a,b}
• Consider primed version g({a,b}) = {a’,b’}
• Note that g(aba) = a’b’a’
• f(aba) = 

{aba,aba’,ab’a,ab’a’,a’ba,a’ba’,a’b’a,a’b’a’}
• h(f(aba)) = {aba,ab,aa,a,ba,b,λ}
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Back to Quotient
• f(L) = { x1x2..xk | a1a2..ak ∈ L } and

each xi is either ai or ai’
• Σ*g(R) = { x g(y) | x∈Σ* and y∈R } =

{ xy’ | x∈Σ* and y∈R }
• f(L) ∩ Σ*g(R) = { xy’ | xy∈L and y∈R }
• h(f(L) ∩ Σ*g(R)) = { x | ∃y∈R where xy∈L }

= L/R
• Since Regular are closed under substitution, 

intersection, and concatenation, they are also 
closed under quotient

1/30/23 UCF @ CS 78



Making Life Easy
• The key in proving closure is to always try to identify the 

“best” equivalent formal model for regular sets when 
trying to prove a particular property

• For example, how could you even conceive of proving 
closure under intersection and complement in regular 
expression notations?

• Note how much easier quotient is when have closure 
under concatenation, and substitution and intersection 
with regular languages than showing in FSA notation
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Reachable and Reaching
• Reachablefrom(q) = { p | ∃w ∍ δ*(q,w)=p }

– Just do depth first search from q, marking all 
reachable states. Works for NFA as well.

• Reachingto(q) = { p | ∃w ∍ δ*(p,w)=q }
– Do depth first search from q, going backwards 

on transitions, marking all reaching states. 
Works for NFA as well.
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Min and Max
• Min(L) = { w | w∈L and no proper prefix of w is in L } = 

{ w | w∈L and if w=xy, x∈Σ*, y∈Σ+ then x∉L}
• Max(L) = { w | w∈L and w is not the proper prefix of any word in L } = 

{ w | w∈L and if y∈Σ+ then wy∉L }
• Examples:

– Min(0(0+1)*) = {0}
– Max(0(0+1)*) = {}
– Min(01 + 0 + 10) = {0,10}
– Max(01 + 0 + 10) = {01,10}
– Min({aibjck | i ≤ k or j ≤ k}) = {aibjck | | i,j ≥0, k = min(i, j)}
– Max({aibjck | i ≤ k or j ≤ k}) = {} because k has no bound
– Min({aibjck | i ≥ k or j ≥ k}) = {λ}
– Max({aibjck | i ≥ k or j ≥ k}) = {aibjck | | i,j ≥0, k = max(i, j)}
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Regular Closed under Min
• Assume L is regular then Min(L) is regular
• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no 

state unreachable from q0

• Define Amin = (Q∪{dead},Σ,δmin,q0,F), where for a∈Σ
δmin(q,a) = δ(q,a), if q∈Q-F; δmin(q,a) = dead, if q∈F;
δmin(dead,a) = dead

The reasoning is that the machine Amin accepts only elements in L that 
are not extensions of shorter strings in L. By making it so transitions 
from all final states in Amin go to the new “dead” state, we guarantee 
that extensions of accepted strings will not be accepted by this new 
automaton.
Therefore, Regular Languages are closed under Min.
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Regular Closed under Max
• Assume L is regular then Max(L) is regular
• Let L= L(A), where A = (Q,Σ,δ,q0,F) is a DFA with no state 

unreachable from q0
• Define Amax = (Q,Σ,δ,q0,Fmax), where 

Fmax= { f | f∈F and Reachablefrom+(f)∩F=Φ }
where Reachablefrom+(q) = { p | ∃w ∍ |w|>0 and δ(q,w) = p }

The reasoning is that the machine Amax accepts only elements in L that cannot be 
extended. If there is a non-empty string that leads from some final state f to any final 
state, including f, then f cannot be final in Amax. All other final states can be retained. 
The inductive definition of Reachablefrom+ is:
1. Reachablefrom+(q) contains { s | there exists an element of S, a, such that d(q,a) = s }
2. If s is in Reachablefrom+ (q) then Reachablefrom+ (q) contains 

{ t | there exists an element of S, a, such that d(s,a) = t }
3. No other states are in Reachablefrom+(q)
Therefore, Regular Languages are closed under Max.
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Regular Expression for L
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A
a,b b

a

B C

A = λ+Ba B = A(a+b)   C = Bb
B = a+b + Ba(a+b) = (a+b)(aa+ab)*
C = (a+b)(aa+ab)*b
L = (a+b)(aa+ab)* (λ+b)
Min(L) = a+b Max(L) = (a+b)(aa+ab)*b



Min(L) and Max(L)
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Pumping Lemma for 
Regular Languages

What is not a Regular Language



Pumping Lemma Concept
• Let A = (Q,Σ,δ,q1,F) be a DFA, where Q = {q1,q2, … , qN}
• The “pigeon-hole principle” tells us that whenever we visit 

N+1 or more states, we must visit at least one state more than 
once (loop)

• Any string, w, of length N or greater leads to us making N 
transitions after visiting the start state, and so we visit at least 
one state more than once when reading w
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Pumping Lemma For Regular
• Theorem: Let L be regular then there 

exists an N>0 such that, if w Î L and 
|w| ≥ N, then w can be written in the form 
xyz, where |xy| ≤ N, |y|>0, and for all i≥0, 
xyiz Î L

• This means that interesting regular 
languages (infinite ones) have a very 
simple self-embedding property that 
occurs early in long strings
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Pumping Lemma Proof
• If L is regular then it is recognized by some DFA, A=(Q,S,d,q0,F). Let |Q| = N 

states. For any string w, such that |w| ≥ N, A must make N+1 state visits to 
consume its first N characters, followed by |w|-N more state visits. 

• In its first N+1 state visits, A must enter at least one state two or more times.
• Let w = v1…vj…vk…vm, where m =|w|, and d(q0,v1…vj)=d(q0,v1…vk), k > j, 

and let this state represent the first one repeated while A consumes w.
• Define x = v1…vj, y = vi+1…vk, and z = vk+1…vm. Clearly w=xyz. Moreover, 

since k > j, |y| > 0, and since k ≤ N, |xy| ≤ N.
• Since A is deterministic, d(q0,xy)=d(q0,xyi), for all i ≥ 0.
• Thus, if w Î L, d(q0,xyz) Î F, and so d(q0,xyiz) Î F, for all i ≥ 0. 
• Consequently, if w Î L, |w|≥N, then w can be written in the form xyz, where 

|xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L.
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Lemma’s Adversarial Process
• Assume L = {anbn | n>0 } is regular
• P.L.: Provides N > 0

– We CANNOT choose N; that’s the P.L.’s job
• Our turn: Choose aNbN Î L

– We get to select a string in L
• P.L.: aNbN = xyz, where |xy| ≤ N, |y| > 0, and for all i ≥ 0, xyiz Î L

– We CANNOT choose split, but P.L. is constrained by N
• Our turn: Choose i = 0.

– We have the power here
• P.L: aN-|y|bN Î L; just a consequence of P.L.
• Our turn: aN-|y|bN Ï L; just a consequence of L’s structure
• CONTRADICTION, so L is NOT regular
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xwx is not Regular (PL)
• L = { x w x | x,w∈{a,b}+ } : 
• Assume that L is Regular.
• PL:    Let N > 0 be given by the Pumping Lemma.
• YOU: Let s be a string, s ∈ L, such that s = aNbaaNb
• PL:    Since s ∈ L and |s| ≥ N, s can be split into 3 pieces, s = xyz, such that 

|xy| ≤ N and |y| > 0 and ∀ i ≥ 0 xyiz ∈ L
• YOU: Choose i = 2 (NOTE: for i=0 there is no conflict)
• PL:    xy2z = xyyz ∈ L 
• Thus, aN + |y|baaNb would be in L, but this is not so since N+|y| > N
• We have arrived at a contradiction.
• Therefore, L is not Regular.
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aFib(k) is not Regular (PL)
• L = {aFib(k) | k>0} : 
• Assume that L is regular
• Let N be the positive integer given by the Pumping Lemma
• Let s be a string s = aFib(N+3)Î L (assume skip seeds to get 2, 3, 5, 8, 13, …)
• Since s Î L and |s| ≥ N (Fib(N+3)>N in all cases; s is split by PL into xyz, 

where |xy| ≤ N  and |y| > 0 and for all i ≥ 0, xyiz Î L
• We choose i = 2; by PL: xy2z = xyyzÎ L
• Thus, aFib(N+3)+|y| would be Î L. This means that there is a Fibonacci number 

between Fib(N+3) and Fib(N+3)+N, but the smallest Fibonacci greater than 
Fib(N+3) is Fib(N+3)+Fib(N+2) and Fib(N+2)>N
This is a contradiction; therefore, L is not regular  ■

• Note: Using values less than N+3 could be dangerous because N could be 
1 and both Fib(2) and Fib(3) are within N of predecessor.
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Pumping Lemma Problems
• Use the Pumping Lemma to show each of 

the following is not regular
– { 0m 12n | m £ n }
– { wwR | w Î {a,b}+ }
– { 1n2 | n > 0 }
– { ww | w Î {a,b}+ }

– What about { wxwR | w,x Î {a,b}+ } ?
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State Minimization

We now want to show, for any 
Regular Language R, 

the minimum state DFA is unique
Myhill-Nerode Theorem



Myhill-Nerode Theorem
The following are equivalent:
1. L is accepted by some DFA
2. L is the union of some of the classes of a right invariant 

equivalence relation, R, of finite index.
3. The specific right invariance equivalence relation 

RL where x RL y iff "z [ xz Î L iff yz Î L ]
has finite index

Definition. R is a right invariant equivalence relation iff R is 
an equivalence relation and "z [ x R y implies xz R yz ].
Note: This is only meaningful for relations over strings.
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Myhill-Nerode 1 ⇒ 2
1. Assume L is accepted by some DFA, A = (Q,Σ,δ,q1,F) 
2. Define RA by x RA y iff δ*(q1,x) = δ*(q1,y). First, RA is 

defined by equality and so is obviously an equivalence 
relation.
Clearly if δ*(q1,x) = δ*(q1,y) then "z δ*(q1,xz) = δ*(q1,yz) 
because A is deterministic. 
Moreover if "z δ*(q1,xz) = δ*(q1,yz) then 
δ*(q1,x) = δ*(q1,y), just by letting z = l.  
Putting it together x RA y L iff "z xz RA yz. Thus, RA is 
right invariant; its index is |Q| which is finite; and 
L(A) = ∪δ*(q1,x)∊F[x]RA, where [x]RA refers to the 
equivalence class containing the string x.
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DFA, A,  Defines RIER, RA of 
Finite Index (here 6)

1/30/23 UCF @ CS 97

1 3

4 5 6

2
a

b

c

a

a

a
a

a

b,c
b

c

b
c

b

c

b
c

A



Myhill-Nerode 2 ⇒ 3
2. Assume L is the union of some of the classes of a right 

invariant equivalence relation, R, of finite index.
3. Since x R y iff "z [ xz R yz ], R is right invariant and L is 

the union of some of the equivalence classes, then 
x R y ⇒ "z [ xz Î L iff yz Î L ] ⇒ x RL y. 
This means that the index of RL is less than or equal to 
that of R and so is finite. Note than the index of RL is 
then less than or equal to that of any other right 
invariant equivalence relation, R, of finite index that 
defines L.
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Same Language but Index is 3
This is based on RL
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It is the case that RL is a refinement of RA in that x RA y implies x RL y. 
This is true of any relationship for L that is based on the states of some 
DFA that accepts L. 
Thus, since in our first automata abba RA ac, then abba RL ac. It is this 
property that makes the equivalence classes of AL be no more than 
those of A.



Myhill-Nerode 3 ⇒ 1
3. Assume the specific right invariance equivalence 

relation RL where x RL y iff "z [ xz Î L iff yz Î L ]
has finite index
Define the automaton A = (Q,Σ,δ,q1,F) by
Q = { [x]RL | x ∈ Σ* }
δ([x]RL,a) = [xa]RL
q1 = [l]
F = { [x]RL | x ∈ L }

Note: This is the minimum state automaton, and all others are either 
equivalent or have redundant indistinguishable states
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More Non-Regular

Myhill-Nerode Theorem as 
Alternative to Pumping Lemma



Use of Myhill-Nerode
• L = {anbn | n>0 } is NOT regular. 
• Assume otherwise.
• M-N says that the specific r.i. equiv. relation RL has finite 

index, where x RL y iff "z [ xz Î L iff yz Î L ].
• Consider the equivalence classes [aib] and [ajb], where 

i,j>0 and i ≠ j.
• aibbi-1 Î L  but  ajbbi-1 Ï L and so [aib] is not related to 

[ajb] under RL and thus [aib] ≠ [ajb] when i ≠ j.
• This means that RL has infinite index.
• Therefore, L is not regular.
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xwx is not Regular (MN)
• L = { x w x | x,w∈ {a,b}+ } :
• We consider the right invariant equivalence class [aib], 

i>0.
• It’s clear that aibaaib is in the language, but akbaaib is 

not when k > i. 
• This shows that there is a separate equivalence class, 

[aib], induced by RL, for each i>0. Thus, the index of RL is 
infinite and Myhill-Nerode states that L cannot be 
Regular.
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aFib(k) is not Regular (MN)
• L = {aFib(k) | k>0} : 
• We consider the collection of right invariant equivalence 

classes [aFib(j)], j > 2.
• It’s clear that aFib(j)aFib(j+1) is in the language, but 

aFib(k)aFib(j+1) is not when k>2 and k≠j and k≠j+2
• This shows that there is a separate equivalence class 

[aFib(j)] induced by RL, for each j > 2.
• Thus, the index of RL is infinite and Myhill-Nerode states 

that L cannot be Regular.
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Myhill-Nerode and 
Minimization

• Corollary: The minimum state DFA for a 
regular language, L, is formed from the 
specific right invariance equivalence 
relation RL, where 
x RL y iff "z [ xz Î L iff yz Î L ]

• Moreover, all minimum state machines 
have the same structure as the above, 
except perhaps for the names of states
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What is Regular So Far?
• Any language accepted by a DFA
• Any language accepted by an NFA
• Any language denoted by a Regular Expression
• Any language representing the unique solution 

to a set of properly constrained regular 
equations

• Any language, L, that is the union of some of the 
classes of a right invariant equivalence relation 
of finite index
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What is NOT Regular?
• Well, anything for which you cannot write an 

accepting DFA or NFA, or a defining regular 
expression, or a right/left linear grammar (to be 
discussed shortly), or a set of regular equations, 
but that’s not a very useful statement

• There are two tools we now have that are useful:
– Pumping Lemma for Regular Languages
– Myhill-Nerode Theorem
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Transducers

Automata with Output



Finite-State Transducers
• A transducer is a machine with output
• Mealy Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q × S ® G is the output function

– Essentially a Mealy Model machine produces a character of 
output for each character of input it consumes, and it does so on 
the transitions from one state to the next.

– A Mealy Model represents a synchronous circuit whose output is 
triggered each time a new input arrives.
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Sample Mealy Model
• Write a Mealy finite-state machine that 

produces the 2’s complement result of 
subtracting 1101 from a binary input 
stream (assuming at least 4 bits of input)
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Finite-State Transducers
• Moore Model

– M = (Q, S, G, d, g, q0)
G is the finite output alphabet
g: Q ® G is the output function

– Essentially a Moore Model machine produced a 
character of output whenever it enters a state, 
independent of how it arrived at that state.

– A Moore Model represents an asynchronous circuit 
whose output is a steady state until new input arrives.
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Summary of Decision and 
Closure Properties

Regular Languages



Decidable Properties
• Membership (just run DFA over string)
• L = Ø: Minimize and see if minimum state DFA is

• L = Σ*: Minimize and see if minimum state DFA is 

• Finiteness: Minimize and see if there are no loops 
emanating on a path to a final state

• Equivalence: Minimize both and see if isomorphic
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Closure Properties
• Virtually everything with members of its own class as we 

have already shown

• Union, concatenation, Kleene *, complement, 
intersection, set difference, reversal, substitution, 
homomorphism, quotient with regular sets, Prefix, Suffix, 
Substring, Exterior, Min, Max and so much more
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Regular Languages # 1
• Finite Automata
• Moore and Mealy models: Automata with output. 
• Regular operations
• Non-determinism: Its use. Conversion to 

deterministic FSAs. Formal proof of equivalence.
• Lambda moves: Lambda closure of a state 
• Regular expressions
• Equivalence of REs and FSAs.
• Pumping Lemma: Proof and applications. 
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Regular Languages # 2
• Regular equations: REQs and FSAs.
• Myhill-Nerode Theorem: Right invariant 

equivalence relations. Specific relation for a 
language L. Proof and applications.

• Minimization: Why it's unique. Process of 
minimization. Analysis of cost of different 
approaches. 

• Regular (right linear) grammars, regular 
languages and their equivalence to FSA 
languages – Grammars are coming up. 
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Regular Languages # 3
• Closure properties: Union, concatenation, 

Kleene *, complement, intersection, set 
difference, reversal, substitution, homomorphism 
and quotient with regular sets, Prefix, Suffix, 
Substring, Exterior. 

• Algorithms for reachable states and states that 
can reach some other chosen states. 

• Decision properties: Emptiness, finiteness, 
equivalence.

117



Formal Languages

Includes and Expands on 
Chapter 2 of Sipser



History of Formal Language
• In 1940s, Emil Post (mathematician) devised rewriting systems as a 

way to describe how mathematicians do proofs. Purpose was to 
mechanize them.

• Early 1950s, Noam Chomsky (linguist) developed a hierarchy of 
rewriting systems (grammars) to describe natural languages.

• Late 1950s, Backus-Naur (computer scientists) devised BNF (a 
variant of Chomsky’s context-free grammars) to describe the 
programming language Algol.

• 1960s was the time of many advances in parsing. In particular, 
parsing of context free was shown to be no worse than O(n3). More 
importantly, useful subsets were found that could be parsed in O(n).
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Grammars
• G = (V, Σ, R, S) is a Phrase Structured Grammar (PSG) 

where
– V: Finite set of non-terminal symbols
– Σ: Finite set of terminal symbols (V ∩ Σ = ∅)
– R: finite set of rules of form α ® β, 

• α in (V È Σ)* V (V È Σ)*
• β in (V È Σ)*

– S: a member of V called the start symbol
• Right linear restricts all rules to be of forms

– α in V
– β of form ΣV, Σ or λ
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Derivations
• x Þ y reads as x derives y iff

– x = γαδ, y = γβδ and α ® β 
• Þ* is the reflexive, transitive closure of Þ
• Þ+ is the transitive closure of Þ
• x Þ* y iff x = y or x Þ* z and z Þ y
• Or, x Þ* y iff x = y or x Þ z and z Þ* y
• L(G) = { w | S Þ* w and w ∈Σ* } is the 

language generated by G.
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Regular Grammars
• Regular grammars are also called right 

linear grammars
• Each rule of a regular grammar is 

constrained to be of one of the three 
forms:
A → l, A ∈ V
A → a, A ∈ V, a ∈ Σ
A → aB, A, B ∈ V, a ∈ Σ
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Example Regular Grammars
G = ({<EVEN>,<ODD>}, {0,1}, R, <EVEN>); R is:
<EVEN> → 0 <EVEN> | 1<ODD> 
<ODD> → 1 <EVEN> | 0 <ODD> | l
L(G) = { w | w ∊ {0,1}* and w has odd parity }
G = ({<0>,<1>,<2>}, {0,1}, R, <0>); R is:
<0> → 0<0> | 1<1>
<1> → 0<2> | 1<0> | l
<2> → 0<1> | 1<2>
L(G) = { w | w ∊ {0,1}* and “You tell me” }
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DFA to Regular Grammar
• Every language recognized by a DFA is 

generated by an equivalent regular 
grammar

• Given A = (Q,Σ,δ,q0,F), L(A) is generated 
by GA = (Q,Σ,R,q0) where R contains
q ® as iff δ(q,a) = s, a ∈ Σ
q ® l iff q ∈ F
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Example of DFA to Grammar
• DFA

• Grammar
G = ({A,B,C}, {0,1), R, A), where R is:

A ® 0 B | 1 B
B ® 0 A | 1 C | l
C ® 0 C | 1 A | l
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Regular Grammar to NFA
• Every language generated by a regular grammar 

is recognized by an equivalent NFA
• Given G = (V, Σ, R, S), L(G) is recognized by 

AG = (V∪{f},Σ,δ,S,{f}) where δ is defined by
δ(A,a) ⊆ {B} iff A → aB
δ(A,a) ⊆ {f} iff A → a
δ(A,l) ⊆ {f} iff A → l
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Example of Grammar to NFA
• Grammar G = ({S,A,B}, {0,1), R, S), 

where R is:
S ® 0 S | 1 A
A ® 0 S | 0 A | 1 B | l
B ® 1 S | 0 B
• NFA (can remove f and make A final)
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What More is Regular?
• Any language, L, generated by a right linear 

grammar (A → a, A → l, A → aB)
• Any language, L, generated by a left linear 

grammar (A → a, A → l, A → Ba)
– Easy to see L is regular as we can reverse these 

rules and get a right linear grammar that generates 
LR, but then L is the reverse of a regular language 
which is regular

– Similarly, the reverse LR of any regular language L is 
right linear and hence the language itself is left linear
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More than One Letter?
• Any language, L, generated by an extended right linear 

grammar (A → α, A → l, A → α B)
Any language, L, generated by an extended left linear 
grammar (A → α, A → l, A → B α)
where α is a non-zero-length string over the alphabet

• Can just change a rule involving α = a1a2..ak, k> 1 to a series 
of k rules

• One is A → a1 A’, where A’ is a new symbol
• If k=2, the other is a2 or a2 B depending on whether we 

had A → α or A → α B
• If k>2, then repeat above on the new rule involving 

a2a3..ak (either A → a2a3..ak or A → a2a3..ak B)

1/30/23 UCF @ CS 129



Mixing Right and Left Linear
• We can get non-Regular languages if we 

present grammars that have both right and left 
linear rules

• To see this, consider G = ({S,T}, Σ, R, S), where 
R is:
– S → aT
– T → Sb | b

• L(G) = { anbn | n > 0 } which is a classic non-
regular, context-free language
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Context Free Languages



Context Free Grammar
G = (V, S, R, S) is a PSG where
Each member of R is of the form
A ® a where a is a strings (VÈS)*
Note that the left-hand side (lhs) of a rule is a letter in V;
The right-hand side (rhs) is a string from the combined alphabets
The right-hand side can even be empty (e or λ) 
A context free grammar is denoted as a CFG and the language 
generated is a Context Free Language (CFL).
A CFL is recognized by a Push Down Automaton (PDA) to be 
discussed a bit later.
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Classic CFLs
L1 = { an bn | n ≥ 0 }
G = ({S}, {a,b}, R, S) is a CFG where R is:
S ® a S b | λ

L2 = { w wR | w ∊ {a,b}* }
G = ({S}, {a,b}, R, S) is a CFG where R is:
S ® a S a | b S b | λ

L3 = { w | w ∊ {a,b}* and the number of a’s is the same as b’s}
G = ({S}, {a,b}, R, S) is a CFG where R is:
S ® a S b S | b S a S | λ
Culd also do S ® S a S b S | S b S a S | λ
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More CFLs
Gi = ({S}, {a,b}, Ri, S) is a CFG where:

R1: S ® a S b | a | a S L1 = { am bn | m >n }

R2: S ® a S a | b S b | λ | a | b L2 = { w | w is a palindrome over {a,b} }
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Sample “Useful” CFG
Example of a grammar for a small language: 

G = ({<program>, <stmt-list>, <stmt>, <expression>}, 
{begin, end, ident, ;, =, +, -}, R, <program>) where R is

<program> à begin <stmt-list> end

<stmt-list> à <stmt>; | <stmt> ; <stmt-list>

<stmt> à ident = <expression>

<expression> à ident + ident | ident - ident | ident 

Here “ident” is a token return from a scanner, as are  “begin”, 
“end”, “;”, “=”, “+”, “-”
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Derivation
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A sentence generation is called a derivation.

Grammar for a simple 
assignment statement:

R1  <assgn> à <id> = <expr>
R2  <id> à a | b | c
R3  <expr>    à <id> + <expr>
R4 |   <id> * <expr>
R5 |   ( <expr> )
R6                   | <id>

The statement a = b * ( a + c ) 
Is generated by the leftmost derivation:

<assgn> Þ <id> = <expr> R1
Þ a = <expr> R2
Þ a = <id> * <expr> R4
Þ a = b * <expr> R2
Þ a = b * ( <expr> )               R5
Þ a = b * ( <id> + <expr> )   R3
Þ a = b * ( a + <expr> ) R2
Þ a = b * ( a + <id> ) R6
Þ a = b * ( a + c ) R2In a leftmost derivation in that only the

leftmost non-terminal is replaced
This is odd as it treats expression parse as right to left associativity 
even without parentheses used here



Parse Trees
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A parse tree is a graphical representation of a derivation
For instance, the parse tree for the statement  a = b * ( a + c )  is:

<assign>

<id>      = <expr>

a <id> * <expr>

b ( <expr>            )

<id> +          <expr>

a <id>

c

Every internal node of a
parse tree is labeled with
a non-terminal symbol.

Every leaf is labeled with a 
terminal symbol.

The generated string is read 
left to right



Ambiguity
A grammar that generates a sentence for which there are two or more 
distinct parse trees is said to be “ambiguous”

For instance, the following grammar is ambiguous because it generates 
distinct  parse trees for the expression a = b + c * a

<assgn> à <id> = <expr>
<id> à a | b | c
<expr>    à <expr> + <expr>

|   <expr> * <expr>
|   ( <expr> )
| <id>
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Ambiguous Parse
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This grammar generates two parse trees for the same expression.

If a language structure has more than one parse tree, the semantic 
meaning of the structure cannot be determined uniquely.

<assign>

<id> =            <expr>

A               <expr>      +           <expr>

<id> <expr>     * <expr>

B <id> <id>

C A

<assign>

<id> =             <expr>

A               <expr>        * <expr>

<expr>       +      <expr>             <id>

<id>                  <id> A

B C



Precedence
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Operator precedence:
If an operator is generated lower in the parse tree, it indicates that the 
operator has precedence over the operator generated higher up in the tree.

An unambiguous grammar for expressions:

<assign> à <id> = <expr>
<id> à a | b | c
<expr>    à <expr> + <term>

|  <term> 
<term>    à <term> * <factor>

|   <factor>
<factor>  à ( <expr> )

| <id>

This grammar indicates the usual 
precedence order of multiplication and 
addition operators.

This grammar generates unique parse
trees independently of doing a 
rightmost or leftmost derivation 



Left (right)most Derivations
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Rightmost derivation:
<assgn>  Þ <id> = <expr>

Þ <id> = <expr> + <term>
Þ <id> = <expr> + <term> *<factor> 
Þ <id> = <expr> + <term> *<id>
Þ <id> = <expr> + <term> *  a
Þ <id> = <expr> + <factor> *  a
Þ <id> = <expr> + <id> *  a
Þ <id> = <expr> + c  *  a
Þ <id> = <term> + c  *  a
Þ <id> = <factor> + c  *  a 
Þ <id> = <id> + c  *  a
Þ <id> =  b + c  * a
Þ a = b +   c  *  a

Leftmost derivation:
<assgn> à <id> = <expr>

à a = <expr>
à a = <expr> + <term>
à a = <term> + <term>
à a = <factor> + <term>
à a = <id> + <term>
à a = b + <term>    
à a = b + <term> *<factor>       
à a = b + <factor> * <factor> 
à a = b + <id> * <factor>
à a = b +   c  * <factor>
à a = b +   c  * <id>
à a = b +   c  *   a



Ambiguity Test
• A Grammar is Ambiguous if there are two 

distinct parse trees for some string
• Or, two distinct leftmost derivations 
• Or, two distinct rightmost derivations
• Some languages are inherently ambiguous, but 

many are not
• Unfortunately (to be shown later) there is no 

systematic (algorithmic) test for ambiguity of an 
arbitrary context free grammars

1/30/23 UCF @ CS 142



Unambiguous Grammar
When we encounter ambiguity, we try to rewrite the grammar to avoid 
ambiguity.

The ambiguous expression grammar:

<expr> à <expr> <op> <expr> | id | int | (<expr>)
<op>    à + | - | * | /

Can be rewritten as:

<expr> à <term> | <expr> + <term> | <expr> - <term>
<term> à <factor> | <term> * <factor> | <term> / <factor>.
<factor> à id | int | (<expr>)
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Parsing Problem
The parsing Problem: Take a string of symbols in a language (tokens) 
and use a grammar for that language to construct the parse tree or 
report that the sentence is syntactically incorrect.

For correct strings:

Sentence + grammar à parse tree

For a compiler,  a sentence is a program:

Program + grammar à parse tree

Types of parsers:

Top-down aka predictive (recursive descent parsing)

Bottom-up aka shift-reduce
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Inherent Ambiguity
• There are some CFLs that are inherently 

ambiguous and others for which we may 
just have carelessly written an ambiguous 
grammar.

• We will see later in course that it is not 
possible to inspect an arbitrary CFG and 
determine if it is unambiguous.

• However, parsers must be unambiguous 
to avoid semantic ambiguity.
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Not All is Lost
• Just because we cannot determine ambiguity of a grammar 

does not mean we cannot have a subclass of grammars that 
are guaranteed to be unambiguous and that can be used to 
generate precisely the set of unambiguous CFLs.

• Note the distinction between the class of unambiguous CFGs 
and unambiguous CFLs.
– Every CFL has an infinite number of CFGs
– Some of the CFGs for an unambiguous CFL are 

unambiguous; some are not
– Every unambiguous CFL has some grammars that are in 

forms that can be recognized as unambiguous and are the 
bases of parsers that run in linear time
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LR(k) and LL(k) Grammars 
• An LL(k) grammar is a grammar that can 

drive a top-down parse by always making 
the right parsing decision with just k 
tokens of lookahead.

• An LR(k) grammar is a grammar that can 
drive a bottom-up parse by always making 
the right parsing decision with just k 
tokens of lookahead.
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LL(k) Grammars 
• LL means we read the input from left-to-right using a 

leftmost derivation with a correct decision requiring just k 
tokens of lookahead.

• There is an algorithm to determine, for any given k, 
whether an arbitrary CFG is LL(k).

• LL(k+1) grammars can generate languages that cannot 
be generated by LL(k) ones.

• Lim k➞∞ LL(k) gets all unambiguous CFLs.
• All programming languages you work with are LL(1) so 

long as we cheat and use a symbol table.
• LL parsers hate left recursion
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LR(k) Grammars 
• LR means we read the input from left-to-right using a 

rightmost derivation run in reverse with a correct 
decision requiring just k tokens of lookahead.

• There is an algorithm to determine, for any given k, 
whether an arbitrary CFG is LR(k).

• LR(1) grammars are sufficient to generate any and all 
unambiguous CFLs.

• All programming languages you work with are LR(1) so 
long as we cheat and use a symbol table.

• LR parsers hate right (tail) recursion.
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Removing Left Recursion if 
doing Top Down

Given left recursive and non left recursive rules
A ® Aa1 | … | Aan | b1 | … | bm

Can view as 
A ® (b1 | … | bm) (a1 | … | an )*
Star notation is an extension to normal notation with 
obvious meaning
Now, it should be clear this can be done right recursively as
A ® b1B | … | bm B
B ® a1B| … | anB | λ
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Left to Right Recursive 
Expressions

Grammar: Expr à Expr + Term | Term
Term à Term * Factor | Factor
Factor à (Expr) | Int

Fix:           Expr à Term ExprRest
ExprRest à + Term ExprRest | l
Term à Factor TermRest
TermRest à * Factor TermRest | l
Factor à (Expr) | Int
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Removing Right Recursion if 
doing Bottom Down

Given left recursive and non left recursive rules
A ® a1 A | … | an A | b1 | … | bm

Can view as 
A ® (a1 | … | an )* (b1 | … | bm) 
Star notation is an extension to normal notation with 
obvious meaning
Now, it should be clear this can be done right recursively as
A ® B b1 | … | B bm

B ® B a1 | … | B an | λ
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Bottom Up vs Top Down
• Bottom-Up: Two stack operations (shift/reduce)

– Shift (move input symbol to stack)
– Reduce (replace top of stack a with A, when A ® a)
– Challenge is when to do shift or reduce and what reduce to do.

• Can have both kinds of conflict (shift-reduce, reduce-reduce)

• Top-Down:  (predictive)
– If top of stack is terminal

• If same as input, read and pop
• If not, we have an error

– If top of stack is a non-terminal A
• Replace A with some a, when A ® a
• Challenge is what A-rule to use
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Recursive Descent Parsing
Recursive Descent parsing uses recursive procedures to model the 
parse tree to be constructed. The parse tree is built from the top down, 
trying to construct a left-most derivation.

Beginning with  start symbol, for each non-terminal (syntactic class) in 
the grammar a procedure which parses that syntactic class is 
constructed.

Consider the expression grammar:
E  à T E’
E’ à + T E’ | λ
T  à F T’
T’ à * F T’ | λ
F  à ( E ) | id 

The following procedures can parse strings top-down in this language:
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Recursive Descent Example
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Procedure E
begin { E }

call T
call E’
print (“ E found ”)

end { E }

Procedure E’
begin { E’ }

If token = “+” then
begin { IF }
print (“ + found “)
Get next token
call T
call E’

end { IF }
print (“ E’ found “)

end { E’ }

Procedure T
begin { T }

call F
call T’
print (“ T found ”)

end { T }

Procedure T’
begin { T’ }

If token = “ * ” then
begin { IF }
print (“ * found “)
Get next token
call F
call T’

end { IF }
print (“ T’ found “)

end { T’ }

Procedure F
begin { F }

case token is
“(“:

print (“ (  found ”)
Get next token
call E
if token = “)” then
begin { IF }

print (“ ) found”)
Get next token
print (“ F found “)

end { IF }
else
call ERROR

“id“:
print (“ id found ”)
Get next token
print (“ F found “)

otherwise:
call ERROR

end { F }



Reduced CFG
• No Nullable (A ® λ) unless λ is in language; if so, we 

can have S ® λ, provided S appears on no rhs
• No chain (unit) rules (A ® B)
• No non-productive non-terminal symbols (variables); 

a variable, A, is productive if A Þ+ w for some w ∊ Σ*
• No useless symbols; a symbol is useless is it never 

appears in a syntactic form that is derivable from the 
start symbol
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Nullable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G) = {A | A ⇒* l }
• Nullable(G) is computed as follows

Nullable(G) ⊇ { A | A → l }
Repeat

Nullable(G) ⊇ { B | B → a and a ∈ Nullable* } 
until no new symbols are added
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Removal of l-Rules
• Let G = (V, S, R, S) be an arbitrary CFG
• Compute the set Nullable(G)
• Remove all l-rules
• For each rule of form B → aAb where A is nullable, add 

in the rule B → ab 
• The above has the potential to greatly increase the 

number of rules and add unit rules 
(those of form B → C, where B,C∈V)

• If S is nullable, add new start symbol S0, as new start 
state, plus rules S0, → l and S0 → a, where S → a
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Chains (Unit Rules)
• Let G = (V, S, R, S) be an arbitrary CFG that has 

had its l-rules removed
• For A∈V, Chain(A) = { B | A ⇒* B, B∈V }
• Chain(A) is computed as follows

Chain(A) ⊇ { A }
Repeat

Chain(A) ⊇ { C | B → C and B ∈ Chain(A) }
until no new symbols are added
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Removal of Unit-Rules
• Let G = (V, S, R, S) be an arbitrary CFG that has had its 
l-rules removed, except perhaps from start symbol

• Compute Chain(A) for all A∈V
• Create the new grammar G = (V, S, R, S) where R is 

defined by including for each A∈V, all rules of the form
A → a, where B → a ∈ R, a ∉ V and B ∈ Chain(A)
Note: A∈Chain(A) so all its non-unit-rules are included
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Non-Productive Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its 
l-rules and unit-rules removed

• Non-productive non-terminal symbols never lead to a 
terminal string (not productive)

• Productive(G) is computed by
Productive(G) ⊇ { A |  A → a, a∈S* }
Repeat

Productive(G) ⊇ { B | B → a, a∈(S∪Productive)* }
until no new symbols are added

• Keep only those rules that involve productive symbols
• If no rules remain, grammar generates nothing
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Unreachable Symbols
• Let G = (V, S, R, S) be an arbitrary CFG that has had its l-

rules, unit-rules and non-productive symbols removed
• Unreachable symbols are ones that are inaccessible from 

start symbol
• We compute the complement (Useful)
• Useful(G) is computed by

Useful(G) ⊇ { S }
Repeat

Useful(G) ⊇ { C | B → aCb, C∈V∪Σ, B∈ Useful(G) }
until no new symbols are added

• Keep only those rules that involve useful symbols
• If no rules remain, grammar generates nothing 
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Chomsky Normal Form
• Each rule of a reduced CFG whose rules 

are constrained to be of one of the three 
forms:
A → a, A ∈ V, a ∈ Σ
A → BC, A,B,C ∈ V

• If the language contains l then we allow
S → l
and constrain non-terminating rules to be
A → BC, A ∈ V,   B,C ∈ (V - {S})
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CFG to CNF
• Let G = (V, S, R, S) be arbitrary reduced CFG 
• Define G’=(V ∪ { <a> | a∈Σ }, S, R, S )
• Add the rules <a> → a, for all a ∈ Σ
• For any rule, A → a, |a| > 1, change each terminal 

symbol, a, in a to the non-terminal <a> 
• Now, for each rule A → BCa, |a| > 0, introduce the new 

non-terminal B<Ca>, and replace the rule A → BCa with 
the rule A → B<Ca> and add the rule <Ca> → Ca

• Iteratively apply the above step until all rules are in CNF 

1/30/23 UCF @ CS 164



Example of CNF Conversion



Starting Grammars
• L = { ai bj ck | i=j or j=k }
• G = ({S,A,<B=C>,C,<A=B>}, {a,b}, R, S)
• R: 

– S à A | C
– A à a A | <B=C>
– <B=C> à b <B=C> c | λ
– C à C c | <A=B>
– <A=B> à a <A=B> b | λ
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Remove Null Rules
• Nullable = {<B=C>, <A=B>, A, C, S}

– S’ à S | λ // S’ added to V
– S à A | C
– A à a A | a |<B=C>
– <B=C> à b <B=C> c | b c
– C à C c | c | <A=B>
– <A=B> à a <A=B> b | ab
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Remove Unit Rules
• Chains= 

{[S’:S’,S,A,C,<A=B>,<B=C>],[S:S,A,C,<A=B>,<
B=C>], 
[A:A,<B=C>],[C:C,<B=C>],[<B=C>:<B=C>], 
[<A=B>:<A=B>]}
– S’ à λ | aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– S à aA | a | b<B=C>c | bc | Cc | c | a<A=B>b | ab
– A à aA | a | b<B=C>c | bc
– <B=C> à b<B=C>c | bc
– C à Cc | c | a<A=B>b | ab
– <A=B> à a<A=B>b | ab
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Remove Useless Symbols
• All non-terminal symbols are productive (lead 

to terminal string)

• S is useless as it is unreachable from S’ (new 
start). 

• All other symbols are reachable from S’
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Normalize rhs as CNF
• S’ à λ | <a>A | a | <b><<B=C><c>> | <b><c> | 

C<c> | c | <a><<A=B><b>> | <a><b>
• A à <a>A | a |<b><<B=C><c>> | <b><c> 
• <B=C> à <b><<B=C><c>> | <b><c>
• C à C<c> | c | <a><<A=B><b>> | <a><b>
• <A=B> à <a> <<A=B><b>> | <a><b>
• <<B=C><c>> à <B=C><c>
• <<A=B><b>> à <A=B><b>
• <a> à a
• <b> à b
• <c> à c
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CKY (Cocke, Kasami, Younger)
O(N3) PARSING
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Dynamic Programming
To solve a given problem, we solve small parts of the problem 
(subproblems), then combine the solutions of the subproblems to reach 
an overall solution.
The Parsing problem for arbitrary CFGs was elusive, in that its 
complexity was unknown until the late 1960s. In the meantime, 
theoreticians developed notion of simplified forms that were as powerful 
as arbitrary CFGs. The one most relevant here is the Chomsky Normal 
Form – CNF. It states that the only rule forms needed are:

A  ® BC where B and C are non-terminals
A ® a where a is a terminal

This is provided the string of length zero is not part of the language.
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CKY (Bottom-Up Technique)
Let the input string be a sequence of n letters a1 ... an. 
Let the grammar contain r terminal and nonterminal symbols R1 ... Rr, 
Let R1 be the start symbol. 
Let P[n,n] be an array of Sets over {1,…n}. Initialize all elements of P to empty ({}). 
For each col = 1 to n 

For each unit production X → ai, set add X to P[1,col]. 
For each row = 2 to n

For each col = 1 to n-row+1
For each row2 = 1 to row-1

if B ∈ P[row2,col] and C ∈ P[row-row2,col+row2]  and A -> B C then 
add A to P[row,col]

If R1 ∈ P[n,n] is true then a1 ... an is member of language 
else a1 ... an is not a member of language 
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CKY Parser
Present the CKY recognition matrix for the string  abba assuming the Chomsky 
Normal Form grammar, G = ({S,A,B,C,D,E}, {a,b}, R, S), specified by the rules R:

S  ® AB  |  BA
A  ® CD  |  a
B  ® CE  |  b 
C  ® a     |  b
D  ® AC
E  ® BC 
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a b b a
1 A,C B,C B,C A,C
2 S,D E S,E
3 B B
4 S,E



2nd CKY Example

1/30/23 UCF @ CS 175

a - a + a - a
1 E M E P E M E

2 E, F E, F E, F

3 E E E

4 E, F E, F

5 E E

6 E, F

7 E

E  ® E F  | M E | P E | a 
F  ® M F | P F | M E | P E
P  ® + 
M  ® -



Pumping Lemma for 
Context Free Languages

What is not a CFL



CFL Pumping Lemma 
Concept

• Let L be a context free language then there is CNF grammar 
G = (V, Σ, R, S) such that L(G) = L.

• As G is in CNF all its rules that allow the string to grow are of the form 
A ➝ BC, and thus growth has a binary nature.

• Any sufficiently long string z in L will have a parse tree that must have deep 
branches to accommodate z’s growth.

• Because of the binary nature of growth, the width of a tree with maximum 
branch length k at its deepest nodes is at most 2k; moreover, if the frontier 
of the tree is all terminals, then the string so produced is of length at most 
2k-1; since the last rule applied for each leaf is of the form A ➝ a.

• Any terminal branch in a derivation tree of height > |V| has more than |V| 
internal nodes labelled with non-terminals. The “pigeonhole principle” tells 
us that whenever we visit |V| +1 or more nodes, we must use at least one 
variable label more than once. This creates a self-embedding property that 
is key to the repetition patterns that occur in the derivation of sufficiently 
long strings.
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Pumping Lemma For CFL
• Let L be a CFL then there exists an N>0 such 

that, if z Î L and |z| ≥ N, then z can be written in 
the form uvwxy, where |vwx| ≤ N, |vx|>0, and for 
all i≥0, uviwxiy Î L.

• This means that interesting context free 
languages (infinite ones) have a self-embedding 
property that is symmetric around some central 
area, unlike regular where the repetition has no 
symmetry and occurs at the start.
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Pumping Lemma Proof
• If L is a CFL then it is generated by some CNF grammar, G = (V, Σ, 

R, S). Let |V| = k. For any string z, such that |z| ≥ N = 2k, the 
derivation tree for z based on G must have a branch with at least 
k+1 nodes labelled with variables from G. 

• By the PigeonHole Principle at least two of these labels must be the 
same. Let the first (starting from frontier) repeated variable be T and 
consider the last two instances of T on this path.

• Let z = uvwxy, where S ⇒* uTy ⇒* uvTxy ⇒* uvwxy
• Clearly, then, we know S ⇒* uTy; T ⇒* vTx; and T ⇒* w
• But then, we can start with S ⇒* uTy; repeat T ⇒* vTx zero or more 

times; and then apply T ⇒* w.
• But then, S ⇒* uviwxiy for all i≥0, and thus uviwxiy Î L, for all i ≥0.
• Why is |vx| > 0? Why is |vwx| ≤ N? Note there are no unit rules and 

there are no other repetitions past the first of these T’s.  
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Visual Support of Proof
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Lemma’s Adversarial Process
• Assume L = {anbncn | n>0 } is a CFL
• P.L.: Provides N>0 We CANNOT choose N; that’s the P.L.’s job
• Our turn: Choose aNbNcN Î L We get to select a string in L
• P.L.: aNbNcN = uvwxy, where |vwx| ≤ N, |vx|>0, and for all i≥0, 

uviwxiy Î L We CANNOT choose split, but P.L. is constrained by N
• Our turn: Choose i=0. We have the power here
• P.L: Two cases: 

(1) vx contains some a’s and maybe some b’s. Because |vwx| ≤ N, it 
cannot contain c’s if it has a’s. i=0 erases some a’s but we still have N c’s so 
uwy∉L
(2) vx contains no a’s. Because |vx|>0, vx contains some b’s or c’s or some 
of each. i=0 erases some b’s and/or c’s but we still have N a’s so uwy∉L

• CONTRADICTION, so L is NOT a CFL
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Second Example: PL for CFL
• Assume L = { ww | w ∈ {a,b}+ } is a CFL
• P.L.: Provides N>0 We CANNOT choose N; that’s the P.L.’s job
• Our turn: Choose aNbNaNbN Î L We get to select a string in L
• P.L.: aNbNaNbN = uvwxy, where |vwx| ≤ N, |vx|>0, and for all i≥0, 

uviwxiy Î L We CANNOT choose split, but P.L. is constrained by N
• Our turn: Choose i=0. We have the power here
• P.L: Two cases: 

(1) vx contains some a’s and maybe some b’s. Because |vwx| ≤ N, it 
cannot contain a’s from both parts involving a’s. i=0 erases at least one a 
from one sequence of a’s but we still have N a’s in the other, so uwy∉L
(2) vx contains no a’s, then it must contain b’s only. Because |vx| >0 and 
|vwx| ≤ N, it erases some b’s from just one sequence of b’s but we still have 
N b’s in the other portion so uwy∉ L

• CONTRADICTION, so L is NOT a CFL
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Non-Closure
• Intersection ({ anbncn | n≥0 } is not a CFL)

{ anbncn | n≥0 } = 
{ anbncm | n,m≥0 } ∩ { ambncn | n,m≥0 }
Both of the above are CFLs

• Complement
If closed under complement, then would 
be closed under Intersection as 
A ∩ B = ~(~A ∪ ~B)
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Max and Min of CFL
• Consider the two operations max and min on languages, where

– max(L) = { x | x ∈ L and, for no non-null y does xy ∈ L } and
– min(L) = { x | x ∈ L and, for no proper prefix of x, y, does y ∈ L }

• Describe the languages produced by max and min. for each of :
– L1 = { ai bj ck | k ≤ i or k ≤ j } CFL

• max(L1) =     { ai bj ck | k =max(i, j)  } Non-CFL  
• min(L1) =      { λ } (string of length 0)  Regular 

– L2 = { ai bj ck | k ≥ i or k ≥ j } CFL
• max(L2) =     {  } (empty) Regular       
• min(L2) =      { ai bj ck | k =min(i, j) } Non-CFL

• max(L1) shows CFL not closed under max
• min(L2) shows CFL not closed under min
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Complement of ww
• Let L = { ww | w ∈ {a,b}+ }. L is not a CFL
• Consider L’s complement, it must be of form xayx’by’ or xbyx’ay’, 

where |x|=|x’| and |y|=|y’| or else it’s an odd length string
• The hard part above reflects that this language contains even length 

items with one “transcription error”
• It seems hard to write a CFG but it’s all a matter of how you view it
• We don’t care about what precedes or follows the errors so long as 

the lengths are right
• Thus, we can view above as xax’yby’ or xbx’y’ay’, 

where |x|=|x’| and |y|=|y’|
• The grammar for this has rules 

S ➝ AB  |  BA | <ODD>;   A ➝ XAX  |  a ;   B ➝ XBX  |  b 
<ODD> ➝ X | XX <ODD>;   X ➝ a  |  b
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Solvable CFL Problems
• Let L be an arbitrary CFL generated by CFG G 

with start symbol S then the following are all 
decidable
– Is w in L? Run CKY

If S in final cell, then w∈L
– Is L empty (non-empty)? Reduce G

If no rules left, then empty
– Is L finite (infinite)? Reduce G

Run DFS(S) 
If no loops, then finite
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Push Down Automata

CFL Recognizers



Formalization of PDA
• A = (Q, Σ, Γ, δ, q0, Z0, F)
• Q is finite set of states
• Σ is finite input alphabet
• Γ is finite set of stack symbols
• δ : Q×Σe×Γe → 2Q×Γ* is transition function

– Note: Can limit stack push to Γe but it’s equivalent!!
• Z0 ∈ Γ is an optional initial symbol on stack
• F ⊆ Q is final set of states and can be omitted 

for some notions of a PDA
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Notion of ID for PDA
• An instantaneous description for a PDA is

[q, w, γ] where 
– q is current state
– w is remaining input 
– γ is contents of stack (leftmost symbol is top) 

• Single step derivation is defined by
– [q,ax,Zα] |— [p,x,βα] if δ(q,a,Z) contains (p,β)

• Multistep derivation (|—*) is the reflexive 
transitive closure of single step.
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Language Recognized by PDA
• Given A = (Q, Σ, Γ, δ, q0, Z0, F)

there are three senses of recognition
• By final state 

L(A) = {w|[q0,w,Z0] |—* [f,λ,β]}, where f∈F
• By empty stack

N(A) = {w|[q0,w,Z0] |—* [q,λ,λ]} 
• By empty stack and final state 

E(A) = {w|[q0,w,Z0] |—* [f,λ,λ]}, where f∈F
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Top Down Parsing by PDA
• Given G = (V, Σ, R, S), define 

A = ({q}, Σ, Σ∪V, δ, q, S, ϕ)
• δ(q,a,a) = {(q,λ)} for all a ∈ Σ
• δ(q,λ,A) = {(q,α) |  A → α ∈ R (guess) }
• N(A) = L(G)

• Has just one state, so is essentially 
stateless, except for stack content
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Example Top Down Parsing 
by PDA

E à E + T | T
T à T * F | F 
F à (E) | Int
•δ(q,+,+) = {(q,λ)}, δ(q,*,*) = {(q,λ)},
•δ(q,Int,Int) = {(q,λ)},
•δ(q,(,() = {(q,λ)}, δ(q,),)) = {(q,λ)} 
•δ(q,λ,E) = {(q,E+T), (q,T)}
•δ(q,λ,T) = {(q,T*F), (q,F)}
•δ(q,λ,F) = {(q,(E)), (q,Int)}
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Bottom Up Parsing by PDA
• Given G = (V, Σ, R, S), define 

A = ({q,f}, Σ, Σ∪V∪{$}, δ, q, $, {f})
• δ(q,a,λ) = {(q,a)} for all a ∈ Σ , SHIFT
• δ(q,λ,αR) ⊇ {(q,A)} if A → α ∈ R, REDUCE

Cheat: looking at more than top of stack
• δ(q,λ,S) ⊇ {(f,λ)}
• δ(f,λ,$) = {(f,λ)} , ACCEPT
• E(A) = L(G)
• Could also do δ(q,λ,S$)⊇{(q,λ)}, N(A) = L(G)
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Example Bottom Up Parsing 
by PDA

E à E + T | T
T à T * F | F 
F à (E) | Int
•δ(q,+,λ)={(q,+)}, δ(q,*,λ)={(q,*)}, δ(q,Int,λ)={(q,Int)},
δ(q,(,λ)={(q,()}, δ(q,),λ)={(q,))}  
•δ(q,λ,T+E) = {(q,E)}, δ(q,λ,T) ⊇ {(q,E)}
•δ(q,λ,F*T) ⊇ {(q,T)}, δ(q,λ,F) ⊇ {(q,T)}
•δ(q,λ,)E() ⊇ {(q,F)}, δ(q,λ,Int) ⊇ {(q,F)}
•δ(q,λ,E) ⊇ {(f,λ)}
•δ(f,λ,$) = {(f,λ)}
•E(A) = L(G)
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Challenge
• Use the two recognizers on some sets of 

expressions like
– 5 + 7 * 2
– 5 * 7 + 2
– (5 + 7) * 2
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Converting a PDA to CFG
• Sipser has one approach; here is another
• Let A = ( Q, S, G, d, q0, Z, F) accept L by empty stack and final state
• Define A’ = (QÈ{q0’,f}, S, GÈ{$}, d’, q0’, $, {f}) where

– d’(q0’, λ, $) = {(q0, PUSH(Z)) or in normal notation {(q0, Z$)}
– d’ does what d does but only uses PUSH and POP instructions, always reading top of stack 

Note1: we need to consider using the $ for cases of the original machine looking at empty 
stack, when using λ for stack check. This guarantees we have top of stack until very end.
Note2: If original adds stuff to stack, we do pop, followed by a bunch of pushes.

– We add (f, λ) = (f, POP) to d’(qf, λ, $) whenever qf is in F, so we jump to a fixed final state.

• Now, wlog, we can assume our PDA uses only POP and PUSH, has just 
one final state and accepts by empty stack and final state. We will assume 
the original machine is of this form and that its bottom of stack is $.

• Define G = (V, S, R, S) where
– V = {S} È { <q, X, p> | q,p Î Q, X Î G }
– R on next page
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Rules for PDA to CFG
• R contains rules as follows:

S ® <q0,$,f> where F = {f}
meaning that we want to generate w whenever 
[q0,w,$] |¾*[f,λ,λ]

• Remaining rules are:
<q,X,p> ® a<s,Y,t><t,X,p>
whenever d(q,a,X) ⊇ {(s,PUSH(Y))}
<q,X,p> ® a
whenever d(q,a,X) ⊇ {(p,POP)}

• Want <q,X,p>Þ*w when [q,w,X] |¾*[p,λ,λ]
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Closure Properties

Context Free Languages



Intersection with Regular
• CFLs are closed under intersection with Regular sets

– To show this we use the equivalence of CFGs generative power 
with the recognition power of PDAs (shown later).

– Let A0 = ( Q0, S, G, d0, q0, $, F0) be an arbitrary PDA
– Let A1 = ( Q1, S, d1, q1, F1) be an arbitrary DFA
– Define A2 = ( Q0 ´ Q1, S, G, d2, <q0,q1> $, F0 ´ F1) where

d2(<q,s>, a, X) ⊇ {(<q’,s’>, a)}, aÎSÈ{l}, XÎG iff
d0(q, a, X) ⊇ {(q’, a)} and d1(s,a) = s’ (if a=l then s’ = s).

– Using the definition of derivation, we see that
[<q0,q1>, w, $] |¾* [<t,s>, l, b] in A2 iff
[q0, w, $] |¾* [t, l, b] in A0 and
[q1, w] |¾* [s, l] in A1

But then wÎ L(A2) iff tÎF0 and sÎF1 iff w Î L(A0) and w Î L(A1)
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Substitution
• CFLs are closed under CFL substitution

– Let G=(V,S,R,S) be a CFG
– Let f be a substitution over S such that

• f(a) = La for a Î S
• Ga = (Va,Sa,Ra,Sa) is a CFG that produces La.
• No symbol appears in more than one of V or any Va

– Define Gf = (V ÈaÎSVa, ÈaÎSSa, R’ ÈaÎSRa, S)
• R’ = { A ® g(a) where A ® a is in R }
• g: (VÈS)* ® (V ÈaÎSSa )*
• g(l) = l; g(B) = B, B Î V; g(a) = Sa, a Î S
• g(aX) = g(a) g(X), |a| > 0, X Î VÈS

– Claim, f(L(G)) = L(Gf), and so CFLs closed under substitution and 
homomorphism.
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More on Substitution
• Consider G’f. If we limit derivations to the rules 

R’ = { A ® g(a) where A ® a is in R } and consider only 
sentential forms over  the ÈaÎSSa , then 
S Þ* Sa1 Sa2 … San in G’ iff S Þ* a1 a2 … an in G 
iff a1 a2 … an Î L(G). But, then w Î L(G) iff f(w) Î L(Gf) and, 
thus, f(L(G)) = L(Gf). 

• Given that CFLs are closed under union, substitution, 
homomorphism and intersection with regular sets, we can 
recast previous proofs to show that CFLs are closed under
– Prefix, Suffix, Substring, Quotient with Regular Sets

• Later we will show that CFLs are not closed under Quotient 
with CFLs.
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Context Sensitive

Will revisit on Complexity Theory



Context Sensitive Grammar
G = (V, S, R, S) is a PSG where
Each member of R is a rule whose right side is no shorter than its left 
side.
The essential idea is that rules are length preserving, although we do 
allow S ® λ so long as S never appears on the right-hand side of any 
rule.
A context sensitive grammar is denoted as a CSG and the language 
generated is a Context Sensitive Language (CSL).
The recognizer for a CSL is a Linear Bounded Automaton (LBA), a form 
of Turing Machine (soon to be discussed), but with the constraint that it 
is limited to moving along a tape that contains just the input surrounded 
by a start and end symbol.
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Phrase Structured Grammar
We previously defined PSGs. The language generated by a 
PSG is a Phrase Structured Language (PSL) but is more 
commonly called a recursively enumerable (re) language. 
The reason for this will become evident a bit later in the 
course.

The recognizer for a PSL (re language) is a Turing 
Machine, a model of computation we will soon discuss.
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CSG Example#1
L = { anbncn | n>0 }
G = ({A,B,C}, {a,b,c}, R, A) where R is
A   → aBbc | abc
B   → aBbC | abC
Note: A ⇒ aBbc ⇒n an+1(bC)n bc // n>0
Cb → bC // Shuttle C over to a c
Cc → cc // Change C to a c
Note: an+1(bC)n bc ⇒* an+1bn+1cn+1

Thus, A ⇒* anbncn , n>0
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CSG Example#2
L = { ww | w ∈{0,1}+ }
G = ({S,A,X,Z,<0>,<1>}, {0,1}, R, S) where R is
S   → 00 | 11 | 0A<0> | 1A<1>
A   → 0AZ | 1AX | 0Z | 1X
Z0 → 0Z Z1 → 1Z // Shuttle Z (for owe zero)
X0 → 0X X1 → 1X // Shuttle X (for owe one)
Z<0> → 0<0> Z<1> → 1<0> // New 0 must be on rhs of old 0/1’s
X<0> → 0<1> X<1> → 1<1> // New 1 must be on rhs of old 0/1’s
<0> → 0 // Guess we are done
<1> → 1 // Guess we are done
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Side Commentary

These are slides that will not be 
discussed directly but summarize 

side comments I have made



Lexical Analysis
In earlier discussions I have alluded to the fact that 
compilers have two early phases – lexical and syntax 
analysis.
Lexical analysis typically is driven by regular expressions 
that specify keywords, operators, special symbols, and 
identifiers. The job of lexical analysis is to identify and 
characterize these components, called tokens or lexemes, 
so syntax analysis can ignore individual characters, treating 
categories as terminals, e.g., age and height are both 
identifiers, but while is a keyword, and both * and / are 
multiplicative operators.
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Syntax Analysis
As noted, syntax analysis depends on lexical analysis to 
acquire the tokens associated with an input stream (a 
presumed program in some source language).
While lexical analysis has no concept of what tokens mean 
when they are contextually laid out, syntax analysis 
understands the structure of a valid program. Its job is to 
check for syntax errors (bad structural combinations) and 
semantic issues related to type mismatch, use before 
definition, or function signature errors – these are possible 
due to the use of a symbol table even though not 
checkable based on pure grammatical analysis.
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Order Analysis
Lexical analysis can be done with a DFA and so this is an 
O(N) process.
The cost of syntax analysis using a CFG is bounded above 
by O(N2.37) due to CKY but we don’t use arbitrary CFGs 
because we are focused on unambiguous CFLs and can 
use either an LR(1) (any unambiguous CFL) or LL(1) (any 
useful unambiguous CFL) grammar. This gets us O(N) 
parsing but requires the use of a symbol table to get 
around context sensitive issues.
It seems we could go to Context Sensitive Grammars 
(CSGs) to handle typing, etc., but that might put us in (2N) 
territory, so we avoid this approach in practice.
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