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Graph Coloring
• Instance: A graph G = (V, E) and an integer k.
• Question: Can G be "properly colored" with at most k colors?

• Proper Coloring: one of the k colors is assigned to each vertex so 
that adjacent vertices have different colors.

• Suppose we have two instances of this problem (1) is True (Yes) 
and the other (2) is False (No).

• AND you know (1) is Yes and (2) is No. (Maybe you have a secret 
program or Oracle that has analyzed the two instances.)
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Checking a “Yes” Answer
• Without showing how your program works (you may not even know), how 

can you convince someone else that instance (1) is, in fact, a Yes instance?
• We can assume the output of the program was an actual coloring of G. Just 

give that to a doubter who can easily check that no adjacent vertices are 
colored the same, and that no more than k colors were used.

• How about the No instance?

• What could the program have given that allows us to quickly "verify" (2) is a 
No  instance?

• No One Knows!!

• For all problems seem to be harder than there exists ones in many contexts
• Think re versus co-re
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Checking a “No” Answer
• The only thing anyone has thought of is to have it test all 

possible ways to k-color the graph – all of which fail, of 
course, if “No” is the correct answer.

• There are an exponential number of things (colorings) to 
check.

• For some problems, there seems to be a big difference 
between verifying Yes and No instances.

• To solve a problem efficiently, we must be able to solve 
both Yes and No instances efficiently and so it would 
seem we should be able to verify both quickly.
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Hard and Easy
• True Conjecture: If a problem is easy to solve, then it is 

easy to verify (just solve it and compare).
• Contrapositive: If a problem is hard to verify, then it is 

(probably) hard to solve.
• There is nothing magical about Yes and No instances –

sometimes the Yes instances are hard to verify and No 
instances are easy to verify. 

• Consider Tautology – yes is for all;
Refutable is complement of Tautology and is there exist

• And, of course, sometimes both are hard to verify, e.g., 
QSAT as it and its complement are the same
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Easy Verification
• Are there problems in which both Yes and No instances 

are easy to verify?

• Yes. For example: Search a list L of n values for a key x.
• Question: Is x in the list L?

• Yes and No instances are both easy to verify.

• In fact, the entire problem is easy to solve!!
• Analogy: recursive means re and co-re
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Verify vs Solve
• Conjecture: If both Yes and No instances are easy to verify, then 

the problem is easy to solve. 
• Analogy (Failure?): Does re/co-re imply recursive have analogy 

here?

• No one has yet proven this claim, but most researchers believe it to 
be true. 

• Note: It is usually relatively easy to prove something is easy – just 
write an algorithm for it and prove it is correct and that it is fast 
(usually,  we mean polynomial).

• But it is usually very difficult to prove something is hard – we may  
not be clever enough yet. So, you will often see "appears to be 
hard."
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A CS Grand Challenge
Does P=NP?

There are many equivalent ways to describe P and NP. For now, we 
will use the following. 
P is the set of decision problems (those whose instances have 
“Yes”/ “No” answers) that can be solved in polynomial time on a 
deterministic computer (no unbounded concurrency or guesses 
allowed). 
NP is the set of decision problems that can be solved in 
polynomial time on a non-deterministic computer (equivalently one 
that  can spawn an unbounded number of parallel threads; 
equivalently one that can be verified in polynomial time on a 
deterministic computer). 
Again, as “Does P=NP?” has just one question, it is solvable, we 
just don’t yet know which solution, “Yes” or “No”, is the correct one.
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Why is P Verify Same as NP
• Assume we can verify each guess in 

polynomial time 
• We can then spawn each guess on a 

separate thread and check in poly time
– or 

• Just make a magic correct guess and 
verify it in poly time 
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Decision vs Optimization
Two types of problems are of particular interest: 

Decision Problems   ("Yes/No" answers)

Optimization problems  ("best" answers)

(there are other types)
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Vertex Cover (VC)
• Suppose we are in charge of a large network (a graph where edges 

are links between pairs of cities (vertices). Periodically, a line fails. 
To mend the line, we must call in a repair crew that goes over the  
line to fix it. To minimize down time, we station a repair crew at one 
end of every line. How many crews must you have and where 
should they be stationed?

• This is called the Vertex Cover Problem. (Yes, it sounds like it  
should be called the Edge Cover problem – something else already 
had that name and it is in P.)

• An interesting problem – it seems to be a hard problem but may not 
be.
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VC Decision vs Optimization
• As a Decision Problem:

– Instances: A graph G and an integer k.
– Question: Does G possess a vertex Cover with at most k vertices?

• As an Optimization Problem:

– Instances: A graph G.
– Question: What is the smallest k for which G possesses a vertex cover?
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Relation of VC Problems
• If we can (easily) solve either one of these problems, we can (easily) 

solve the other. To solve the optimization version, just solve the  
decision version with several different values of k. Use a binary 
search on  k between 1 and  n.  That is log(n) solutions  of the  
decision problem solves the  optimization problem. It's simple to 
solve the  decision version if we can solve the  optimization version 
(why?).

• We say their time complexity differs by no more than a multiple of 
log(n).

• If one is polynomial, then so is the other.
• If one is exponential, then so is the other.

• We say they are equally difficult (both poly. or both exponential).
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A Word about Time
An algorithm for a problem is said to be polynomial if 
there exists integers k and N such that t(n), the 
maximum number of steps required on any instance of 
size n, is at most nk, for all n ≥ N.

Otherwise, we say the algorithm is exponential. Usually, 
this is interpreted to mean t(n) ≥ cn for an infinite set of 
size n instances, and some constant c > 1 (often, we 
simply use c = 2).
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Three Classes of Problems
Problems proven to be in these three groups 
(classes) are, respectively,

Undecidable, Exponential, and Polynomial.

Theoretically, all problems belong to exactly 
one of these three classes. 
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Unknown Complexity
Practically, there are a lot of problems (maybe, most) that 
have not been proven to be in any of the classes (Yet, maybe 
never will be). 

Most currently "lie between" polynomial and exponential – we 
know of exponential algorithms but have been unable to prove 
that exponential algorithms are necessary. 

Some may have polynomial algorithms, but we have not yet 
been clever enough to discover them.

Some are provably exponentially hard.
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Subset Sum
• Problem – Subset Sum

• Instances: A list L of n integer values and an integer B.
• Question: Does L have a subset that sums exactly to B?

• No one knows of a polynomial (deterministic) solution to this  problem.

• On the other hand, there is a very simple (dynamic programming) algorithm 
that runs in O(nB) time.

• Why isn't this "polynomial"? 
– Because the "length" of an instance is n lg(B) and
– nB > (n lg(B))^k for any fixed k, when B is sufficiently large
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Research Territory
Decidable – vs – Undecidable     

(area of Computability Theory)

Exponential – vs – polynomial   
(area of Computational Complexity)

Algorithms for any of these         
(area of Algorithm Design/Analysis)
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NonDeterminism



Models of Computation
Non-Determinism

Since we can't seem to find a model of computation that 
is more powerful than a TM, can we find one that is 
'faster'?

In particular, we want one that takes us from exponential 
time to polynomial time.

Our candidate will be the Non-Deterministic Turing 
Machine (NDTM).
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NDTMs
As NDTMs are automata, we only care about what they 
accept and generally have just one accepting state. We 
want to determine how long it takes to get to the accept 
state - that's our only motive!!

So, what is a NDTM doing?
In a NDTM, like in a NFA or NPDA, what we are doing is 
making, and testing, all of those choices at once by 
'spawning' a different NDTM for each of them. Those 
that don't work out, simply die (or something).

This is the ultimate in parallel programming.

4/11/23 © UCF CS 21



NDTM and Oracles
Another interpretation of non-determinism:

From the basic definition, we notice that out of every 
state having a non-deterministic choice, at least one 
choice is valid and all the rest sort of die off. That is, they 
really have no reason for being spawned for this 
instance. So, we station at each such state, an 'oracle' 
(an all-knowing being) who only allows the correct NDTM 
to be spawned.

An 'Oracle Machine.’ 
All we care about is the time associated with the right 
choices. In fact, we can have  a single oracle that makes 
all the right choices in advance, if they exist.
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Checking an Oracle/Witness
For example, in the SubsetSum problem, we 
ask the oracle to write down the subset of 
objects whose sum is B (the desired sum). 
Then we ask "Can we write a deterministic 
polynomial algorithm to test the given 
witness." 

The answer for SubsetSum is Yes, we can, 
i.e., the witness is verifiable in deterministic 
polynomial time.
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NDTMs - Witnesses
Just what can we ask and expect of a "witness"?

The witness must be something that 
(1) we can verify to be accurate (for the given 

problem and instance) and
(2) we must be able to "finish off" the solution.

All in polynomial time.
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Witness and Graph Coloring
The information provided must be something we could 
have come up with ourselves, but probably at an 
exponential cost. And, it has to be enough so that we can 
conclude the final answer Yes from it.

Consider a witness for the graph coloring problem:

Given: A graph G = (V, E) and an integer k.
Question: Can the vertices of G be assigned colors so that 
adjacent vertices have different colors and use at most k
colors?

4/11/23 © UCF CS 25



Good and Bad Witnesses
The witness could just say Yes or No.

But that's not good enough - we don't know of a 
polynomial algorithm for graph coloring.

It could be "vertex 10 is colored Red." 
That's not good enough either.  Any single vertex 
can be colored any color we want.

It could be a color assigned to each vertex. 
That would work, because we can verify its validity 
in polynomial time, and we can conclude the 
correct answer of Yes.
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More on Witnesses
What if it was a color for all vertices but one?

That also is enough. We can verify the correctness of the 
n-1 given to us, then we can verify that the one uncolored 
vertex can be colored with a color not on any neighbor, 
and that the total is not more than k.

What if all but 2, 3, or 20 vertices are colored
All are valid witnesses. (Potentially exponential but for a 
constant, not a variable n)

What if half the vertices are colored? 
Usually,  No. There's not enough information. Sure, we 
can check that what is given to us is properly colored, but 
we don't know how to "finish it off” except perhaps in kn/2
time.
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Deterministic Exponential 
Time

A major question remains: Do we have, in NDTMs, 
a model of computation that solves all 
deterministic exponential (DE) problems in 
polynomial time (nondeterministic polynomial 
time)??

It definitely solves some problems we think are 
DE in nondeterministic polynomial time.
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DEXP Versus NEXP
But, so far, all problems that have been proven to 
require deterministic exponential time also require 
nondeterministic exponential time.

So, the jury is still out. In the meantime, NDTMs 
are still valuable, because they might identify a 
larger class of problems than does a deterministic 
TM - the set of decision problems for which Yes 
instances can be verified in polynomial time.
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Problem Classes
We now begin to discuss several different classes of 
problems. The first two will be: 

NP 'Nondeterministic' Polynomial
P 'Deterministic' Polynomial,

The 'easiest' problems in NP

Their definitions are rooted in the depths of Computability 
Theory as just described, but it is worth repeating some of 
it in the next few slides.
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Class – NP

First Significant Complexity 
Class of Problems



Vertex Cover Definition
Consider two seemingly closely related statements 
(versions) of a single problem. We show they are 
actually very different. Let G = (V, E) be a graph.

Definition: X Í V(G) is a vertex cover if 
every edge in G has at least one endpoint 
in X.
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Variants of VC
Version 1. Given a graph G and an integer k.

Does G contain a vertex cover 
with at most k vertices?

Version 2. Given a graph G and an integer k. 
Does the smallest vertex cover of G 
have exactly k vertices?

Suppose, for either version, the answer is "yes," and 
someone also gives us a set X of vertices and claims

"X satisfies the conditions."
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Version 1 of VC
In Version 1, we can easily check that 
the claim is correct – in polynomial 
time.

That is, in polynomial time, we can 
check that X has k vertices, and that 
X is a vertex cover.
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Version 2 of VC
In Version 2, we can also easily check that X has 
exactly k vertices and that X is a vertex cover. 

But we don't know how to easily check that there is 
not a smaller vertex cover!!

That seems to require exponential time.

These are very similar looking "decision" problems 
(Yes/No answers), yet they are VERY different in 
this one important respect.
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Version 1 in NP
Version 1 problems make up the class called NP

Definition: The Class NP is the set of all decision 
problems for which answers to Yes instances can be 
verified in polynomial time. 

For historical reasons, NP means
"Nondeterministic Polynomial." 

(Specifically, it does not mean "not polynomial").
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Version 3 of VC
Version 2 of the Vertex Cover problem is not unique. 
There are other versions that exhibit this same property. 
For example,

Version 3: Given:    A graph G = (V, E) and an 
integer k.

Question: Do all vertex covers of G 
have more than k vertices?

What would/could a 'witness' for a Yes instance be?
Version 3 is the Complement Problem of Version 1.
It is a “for all not” versus a “there exist.”
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Characteristics of NP
All problems in NP are decidable. 

That means there is an algorithm.

And the algorithm is no worse than O(2n).
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Non-NP
Version 2 and 3 problems are apparently not in 
NP.

So, where are they?? 

We need more structure! {Again, later.} 

First we look inward, within NP.
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Class – P

Second Significant Complexity 
Class of Problems



P Contained in NP
Some decision problems in NP can be solved 
(without knowing the answer in advance) - in 
polynomial time. That is, not only can we verify a 
correct answer in polynomial time, but we can 
actually compute the correct answer in polynomial 
time - from "scratch." 

These are the problems that make up the class P.

P is a subset of NP.
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A Witness Analogy for P
Problems in P can also have a witness – we just 
don't need one. This line of thought leads to an 
interesting observation. 

Given: A list L of n values and a key X.
Question: Is X in L?

An oracle can provide a "witness" for a Yes
instance by writing the index k for X.
We can verify the correctness with one simple 
comparison Is L[k] = X?
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Complement of P
Now, consider the complement (Version 3) of this 
problem:

Given: A list L of n values and a key X.
Question: Is X not in L?

Here, for any Yes instance, no 'witness' seems to 
exist, but if the oracle simply writes down "Yes" we 
can verify the correctness in polynomial time by 
comparing X with each of the n values and report 
"Yes, X is not in the list“ if that is so.
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P and Co-P
Therefore, both problems can be verified in 
polynomial time and, hence, both are in NP.

This is a characteristic of any problem in P - both it 
and its complement can be verified in polynomial 
time (of course, they can both be 'solved' in 
polynomial time, too.)

Therefore, we can again conclude P Í NP.
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NP and Co-NP
There is a popular conjecture that if any problem and its 
complement are both in NP, then both are also in P.

This has been the case for several problems that for many 
years were not known to be in P, but both the problem and 
its complement were known to be in NP.

For example, Linear Programming (proven to be in P in the 
1980’s). 

A notable 'holdout' to date is Graph Isomorphism.
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Is P=NP?
At the moment, no one knows. 

Some believe all problems in NP have polynomial 
algorithms. Many do not (believe that).

The fundamental question in theoretical computer science 
is: 
Does P = NP?

There is an award of one million dollars for a proof. 
– Either way, True or False.
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The "Key" to 
Complexity Theory

'Reductions,' 
'Reductions,' 
'Reductions.' 



Abstract Solution
For any problem X, let X(IX, AnswerX) 
represents an algorithm for problem X – even if 
none is known to exist.

IX is an arbitrary instance given to the 
algorithm and AnswerX is the returned 
answer determined by the algorithm.
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Polynomial Time Reductions
Definition: For problems A and B, a (Polynomial) Turing 
Reduction is an algorithm A(IA, AnswerA) for solving all 
instances of problem A and satisfies the following:
(1) Constructs zero or more instances of problem B and 
invokes algorithm B(IB, AnswerB), on each.
(2) Computes the result, AnswerA, for IA.
(3) Except for the time required to execute algorithm B, the 
execution time of algorithm A must be polynomial with 
respect to the size of IA.

We say A ≤P B
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Best Algorithm for B
We may assume a 'best' algorithm for 
problem B without actually knowing it. 

If A(IA, AnswerA) can be written without 
algorithm B, then problem A is simply a 
polynomial problem.
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PolyTime Reductions

Theorem. If A ≤P B and problem B is 
polynomial, then problem A is 
polynomial.

Corollary. If A ≤P B and problem A is 
exponential, then problem B is 
exponential.
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PT Reduction Theorem
Theorem. If A ≤P B , then problem  A is "no harder 
than" problem B.
Proof: Let fX(n) be the inherent complexity of 
problem X. Let tA(n) and tB(n) be the maximum 
times for some algorithms to solve A and B. 
Thus, fA(n) ≤ tA(n). Further, since we assume the 
best algorithm for B, tB(n) = fB(n). Since A ≤P B, 
there is a constant k such that tA(n) ≤ nktB(n). 
Therefore, fA(n) ≤ tA(n) ≤ nktB(n) =  nkfB(n). That 
is, A is no harder than B within a polynomial factor.
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PT Reductions Properties
Theorem. (transitivity)

If A ≤P B and B ≤P C then A ≤P C.

Definition. 
If A ≤P B and B ≤P A, then A and B 
are polynomially equivalent. AºpB

Note reflexive as A ≤P A 
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NP–Complete

Third Significant Complexity Class 
of Problems



NP–Complete
• Polynomial Transformations enforce an 

equivalence relationship on all decision 
problems, particularly, those in the Class NP. 
Class P is one of those classes and is the 
"easiest" class of problems in NP. 

• Is there a class in NP that is the hardest class in 
NP?

• A problem B in NP such that A ≤P B for every A
in NP is called NP-Complete 
(Analogy to re-complete)
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NP–Hard
• A problem B such that A ≤P B for every A in 

NP-Complete is called NP-Hard 
(Second Analogy to re-hard)
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Propositional Logic

How Hard Can That Be?
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Propositional Calculus
• Mathematical of unquantified logical expressions
• Essentially Boolean algebra
• Goal is to reason about propositions
• Often interested in determining

– Is a well-formed formula (wff) a tautology?
– Is a wff refutable (unsatisfiable)?
– Is a wff satisfiable? (will show this is the 

canonical NP-complete problem)
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Tautology and Satisfiability
• The classic approaches are:

– Truth Table
– Axiomatic System (axioms and inferences)

• Truth Table
– Clearly exponential in number of variables

• Axiomatic Systems Rules of Inference
– Substitution and Modus Ponens
– Resolution / Unification (1st order only)
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Proving Consequences
• Start with a set of axioms (all tautologies)
• Using substitution and MP 

(P, P ÉQ Þ Q)
derive consequences of axioms (also 
tautologies, but just a fragment of all  
unless axioms are “complete”)

• Can create complete sets of axioms
• Need 3 variables for associativity, e.g., 

(p1 Ú p2) Ú p3   É p1 Ú (p2 Ú p3)
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Some Undecidables
• Given a set of axioms,

– Is this set complete?
– Given a tautology T, is T a consequent?

• The above are even undecidable with one 
axiom and with only 2 variables. I will 
show the latter result shortly.
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Refutation
• If we wish to prove that some wff, F, is a 

tautology, we could negate it and try to 
prove that the new formula is refutable 
(cannot be satisfied; contains a logical 
contradiction).

• This is often done using resolution.
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Resolution
• Put formula in Conjunctive Normal Form 

(CNF)
• If have terms of conjunction

(P Ú Q), (R  Ú ~Q)
then can determine that (P Ú R)

• If we ever get a null conclusion, we have 
refuted the proposition

• Resolution is not complete for derivation, 
but it is for refutation
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Axioms
• Must be tautologies
• Can be incomplete
• Might have limitations on them and on 

WFFs, e.g.,
– Just implication
– Only n variables
– Single axiom
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Simulating Machines
• Linear representations require 

associativity, unless all operations can be 
performed on prefix only (or suffix only)

• Prefix and suffix-based operations are 
single stacks and limit us to CFLs

• Can simulate Post normal Forms with just 
3 variables. A PNF has rules aP ® Pb
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Diadic PIPC
• Diadic limits us to two variables
• PIPC means Partial Implicational 

Propositional Calculus, and limits us to 
implication as only connective

• Partial just means we get a fragment
• Problems

– Is fragment complete?
– Can F be derived by substitution and MP?
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Living without Associativity
• Consider a two-stack model of a TM
• Could somehow use one variable for left 

stack and other for right
• Must find a way to encode a sequence as 

a composition of forms – that’s the key to 
this simulation
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Composition Encoding
• Consider (p É p), (p É (p É p) ), 

(p É (p É (p É p) ) ), …
– No form is a substitution instance of any of the 

other, so they can’t be confused
– All are tautologies

• Consider ((X É Y) É Y)
– This is just X Ú Y
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Encoding
• Use (p É p) as form of bottom of stack
• Use (p É (p É p)) as form for letter 0
• Use (p É (p É (p É p))) as form for 1
• Etc.
• String 01 (reading top to bottom of stack) is

– (   ( (p É p) É ( (p É p) É ( (p É p) É (p É p) ) ) ) É
( ( (p É p) É ( (p É p) É ( (p É p) É (p É p) ) ) ) É
( (p É p) É ( (p É p) É ( (p É p) É (p É p) ) ) ) ) )



TM to Encode
• Tape alphabet {0,1} 0 is blank
• State set {q1, q2, … , qm} 

– q1 is start state
– Machine halts if we reach a discriminant 

(state, scanned symbol) with no associated 
action
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Encoding Functions
I(p) abbreviates [p É p] // stack bottom
F0(p) is [p É I(p)] which is [p É [p É p]] // symbol 0
F1(p) is [p É F0(p)] // symbol 1
x1(p) is [p É F1(p)] // helper 1
x2(p) is [p É x1 (p)] // helper 2
x3(p) is [p É x2 (p)] // helper 3
y1(p) is [p É x3 (p)] // symbol q1

y2(p) is [p É y1 (p)] // symbol q2

…
ym(p) is [p É ym-1 (p)] // symbol qm
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Example TM ID
• Let a TM’s ID be

110 q5 1101
• Tape could be represented by two stacks

Stack 1 is right side, reading left to right 
q5 1101 

• Stack 2 is left side, reading right to left
011
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Encoded Example TM ID
• q5 1101  (stack 1, read left to right)
• 011 (stack 2, read left to right)
• y5( F1( F1( F0( F1( I (p1) ) ) ) ) ) Ú F0( F1( F1( I (p2) ) ) ) 
• Consider a Turing Table entry q5 1 L q2

• We could have an implication like
[y5(F1(p1)) Ú F0(p2)] É [y2(F0(F1(p1))) Ú p2] 

• Using substitution (see red) and MP
[y5(F1(F1(F0(F1(I(p1)))))) Ú F0(F1(F1(I(p1))))] Þ
[y2(F0(F1(F1(F0(F1(I(p1))))))) Ú F1(F1(I(p1)))]

• This mimics one step of forward computation
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Running Backwards
• The simulation we show actually will mimic  the 

TM running backwards so the rule on the 
previous page will actually be 
[y2(F0(F1(p1))) Ú p2] É [y5(F1(p1)) Ú F0(p2)]

• To kick things off, my rules want to allow me to 
deduce any arbitrary halting ID

• We use three helper forms to do this; they are 
x1(p), x2(p), and x3(p) 
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x1 Sets Up Stack 2
• The only axiom that does not involve a form for which MP can be 

applied is
1. [x1I(p1) Ú I(p1)]

• The above reflects two empty stacks
• Using x1 rules, we generate any and all possible left-hand sides of 

tape in stack 2
• This guarantees that left side is either empty (rule 4) or starts with a 

1 (rule 2)
• If we apply rule 2 then rule 3 can expand the left side
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x2 Starts Up Stack1
• Two possibilities follow

Either Rule 4 replaces x1 with x2 and assures that the 
right side of tape (stack 1) has a 1 as its rightmost 
symbol
Or Rule 5 replaces x1 with x3 and assures that the right 
side of tape (stack 1) has just a scanned symbol (can be 
a 0 or 1)

• If we use x2 then rule 6 can expand the right side but at 
some point we use rule 7 to switch to x3
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x3 Insures Terminal 
Discriminamt

• Rule 8 replaces x3 with any yk such that qki halts (no 
rule) and i, represented by Fi, is on the top of stack 1 
(new wff will be of form yk(Fi(p1)) Ú p2

• This is the point where the simulation of the TM begins, 
except we run TM in reverse via rules 9-13 (and their 
subparts)

• While these rules can be a bit complex at first they are 
just the same ones we used to map a TM to a semi-Thue
system or a PSG
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Putting it Together
• The main point is that the axioms produce  a bunch of 

items that are easy to check for validity (the stuff 
involving the forms x1, x2, and x3 plus exactly those 
representations of starting IDs for which the TM halts

• If we could decide what Tautologies are producible by 
this Propositional System then we would be able to solve 
the Halting Problem for TMs

• This proves the deducibility problem for Fragments of the 
2-Variable Implicational Calculus (PIPC) is unsolvable

• This is true even though two variables are insufficient to 
represent the basic notion of associativity!!!
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Creating Terminal IDs
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Reversing Print and Left
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Reversing Right



Satisfiability

How Hard Can That Be?



Conjunctive Normal Form
U = {u1, u2,…, un}, Boolean variables.

C = {c1, c2,…, cm}, "OR clauses"
For example:

ci = (u4 Ú u35 Ú ~u18 Ú u3… Ú ~u6)
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Satisfiability Challenge

Can we assign Boolean values to the 
variables in U so that every clause is TRUE?

There is no known polynomial time 
algorithm!!
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Cook’s Theorem
Cooks Theorem:

1) SAT is in NP
2) For every problem A in NP,

A ≤P SAT

Thus, SAT is as hard as every problem 
in NP.
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SAT as NP–Complete
Since SAT is itself in NP, that means SAT is a 
hardest problem in NP (there can be more 
than one.).

A hardest problem in a class is called the 
"completion" of that class. 

Therefore, SAT is NP–Complete.

4/11/23 © UCF CS 86



Ubiquity
Today, there are many 1,000’s of problems 
that have been proven to be NP–Complete. 
(See Garey and Johnson, Computers and 
Intractability: A Guide to the Theory of NP–
Completeness, for a list of over 300 as of 
the early 1980's).



What about P = NP?
If P = NP then all problems in NP are 
polynomial problems.

If P ≠ NP then all NP–C problems are at 
least super-polynomial and perhaps 
exponential. That is, NP-C problems could 
require sub-exponential super-polynomial 
time. (Example of super-polynomial, sub-
exponential is o(2o(n)), e.g., 2∛n
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Evidence for P = NP?
Why should P equal NP?
• There seems to be a huge "gap" between the known 

problems in P and Exponential. That is, almost all 
known polynomial problems are no worse than n3 or 
n4. 

• Where are the O(n50) problems?? O(n100)? Maybe 
they are the ones in NP–Complete? 

• It's awfully hard to envision a problem that would 
require n100, but surely they exist?

• Some of the problems in NP–C just look like we 
should be able to find a polynomial solution (looks 
can be deceiving, though). 
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Evidence for P ≠ NP?
Why should P not equal NP?

• P = NP would mean, for any problem in NP, that it is 
just as easy to solve an instance form "scratch," as it is 
to verify the answer if someone gives it to you. That 
seems a bit hard to believe.

• There simply are a lot of awfully hard looking problems 
in NP–Complete (and Co–NP-Complete) and some just 
don't seem to be solvable in polynomial time.

• Many smart people have tried for a long time to find 
polynomial algorithms for some of the problems in NP-
Complete - with no luck.
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NP-Complete; NP-Hard
A decision problem, C, is NP-complete if:

C is in NP and 
C is NP-hard. That is, every problem in NP is polynomially
reducible to C.

D polynomially reduces to C means that there is a deterministic 
polynomial-time many-one algorithm, f, that transforms each instance x
of D into an instance f(x) of C, such that the answer to f(x) is YES if and 
only if the answer to x is YES. 
To prove that an NP problem A is NP-complete, it is sufficient to show 
that an already known NP-complete problem polynomially reduces to A. 
By transitivity, this shows that A is NP-hard.
A consequence of this definition is that if we had a polynomial time 
algorithm for any NP-complete problem C, we could solve all problems 
in NP in polynomial time. That is, P = NP.
Note that NP-hard does not necessarily mean NP-complete, as a given 
NP-hard problem could be outside NP. Analogy to re-complete
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Returning to SAT
• SAT is the problem to decide of an arbitrary 

Boolean formula (wff in the propositional 
calculus) whether or not this formula is 
satisfiable (has a set of variable assignments 
that evaluate the expression to true).

• SAT clearly can be solved in time k2n, where k is 
the length of the formula and n is the number of 
variables in the formula.

• What we now show is that SAT is NP-complete, 
providing us our first concrete example of an 
NP-complete decision problem.



Simulating NDTM
• Given a NDTM, M, and an input w, we need to create a 

formula, jM,w, containing a polynomial number of terms 
that is satisfiable just in case M accepts w in polynomial 
time.

• The formula must encode within its terms a trace of 
configurations that includes
– A term for the starting configuration of the TM
– Terms for all accepting configurations of the TM
– Terms that ensure the consistency of each configuration
– Terms that ensure that each configuration after the first follows 

from the prior configuration by a single move 
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Tableaus
A tableau is an array of tape alphabet 
symbols.

It represents a configuration history of one 
branch of our NDTM’s nondeterminism.
If the NDTM runs in nk time, the tableau is an 
(nk ´ nk) tableau.

It’s big enough downward because the TM runs 
in nk.
…and rightward because the TM can only 
count to nk.

We assume that every configuration starts and 
ends with a # symbol.
We think of our tableau as looking like this in 
the “beginning”: the starting configuration 
across the top, and the other configurations 
blank.

(We quote “beginning” because SAT isn’t really 
a stateful algorithm, but just go with it for now.)

But we’ve assumed that we can “represent” 
alphabet symbols.  How do we do that, in 
SAT?

# q0 w1 w2 … wn □ … □ #

↑
nk
↓

# #
# #
# #
# #
# #
# #
# #
# #
# #

← nk →
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Encoding the Tableau: Basics
Consider a set comprised of:

The tape alphabet
The state set
The separator character

C = G È Q È { # }
Consider a cell variable:

xi,j,c
Turning this variable on corresponds to 
setting cell (i, j) = c, for some c Î C.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #
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Encoding the Tableau: Cells

Consider our tableau alphabet:
C = G È Q È { # }

Consider a cell and corresponding 
variable:

xi,j,c
Now we need to make sure the tableau is 
consistently encoded.

Create a clause for each cell (i, j).

The left demands xi,j,c be true for some c.
The right demands xi,j,c be true for only 
one c.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙!"#$%! 𝑖, 𝑗 = &
&∈(

𝑥),+,& ∧ )
&,,∈(
&-,

𝑥),+,& ⋁ 𝑥),+,,

4/11/23 © UCF CS 96



Encoding the Tableau: The 
Tableau

Tableau alphabet: C = G È Q È { # }
Cell variable: xi,j,c
Create an encoding clause for each cell (i, j).

Now repeat the clause across the tableau.

This is our cell formula.  It ensures that each 
cell in the tableau is assigned a single 
symbol.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙!"#$%! 𝑖, 𝑗 = &
&∈(

𝑥),+,& ∧ )
&,,∈(
&-,

𝑥),+,& ⋁ 𝑥),+,,

𝜙#!../ = )
01),+12!

𝜙!"#$%! 𝑖, 𝑗
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Encoding the Tableau: 
Complexity

We can create the single-cell 
encoding formula in polynomial time 
with a |C|2 iteration.

We can create the entire cell formula 
in polynomial time with an n2k
iteration around that.
So we can say that fcells is satisfied 
by, and only by, a properly 
encoded tableau, and is created in 
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙!"#$%! 𝑖, 𝑗 = &
&∈(

𝑥),+,& ∧ )
&,,∈(
&-,

𝑥),+,& ⋁ 𝑥),+,,

𝜙#!../ = )
01),+12!

𝜙!"#$%! 𝑖, 𝑗
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Starting and Accepting
Starting and accepting are (comparatively) easy.  
To start, take the start configuration padded to nk
length with blanks…

S = #q0w1w2…wn□…□# so that |S| = nk

…and require the first row be equal to the start 
configuration:

Then to accept, just require an accept state 
somewhere in the tableau.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # w1 w2 … qA … □ … □ #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙!"#$" = #
%&'&(!

𝑥%,',*"

𝜙#++,-" = %
%&.,'&(!

𝑥.,',/#
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Starting and Accepting

We can generate the start and accept 
formulas in nk and (nk)2 time, both 
polynomial.
So now we can say that:
fstart is satisfied by, and only by, a 
tableau with the starting configuration 
of M on w encoded as its first row and 
is created in polynomial time.

…and…
faccept is satisfied by, and only by, a 
tableau encoding an accepting 
configuration as one of its rows and is 
created in polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 w1 w2 … wn □ … □ #
2 # #
3 # #
4 # #
5 # z1 z2 … qA … □ … □ #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙!"#$" = #
%&'&(!

𝑥%,',*" 𝜙#++,-" = %
%&.,'&(!

𝑥.,',/#
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Transitions

Now, for transitions.  Recall the discussions 
we had about ID changes being limited to 
three characters or six, when looking at 
transitions..

A given 2x3 window is legal if it does not 
violate our machine’s transition function.
Given the linear sets of states and tape 
symbols, and the finite size of 2x3 windows, 
we can make a polynomial-sized set of all 
legal windows.

Let a sequence A = (a1, …, a6) be a 2x3 
window, with a1 the top left cell, a2 the top 
middle, etc.

We say that A is legal if it represents a legal 
window. Here we have q0 a R q1

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #
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Transitions
A given 2x3 window is legal if it does not 
violate our machine’s transition function.  We 
have a polynomial-sized set of all legal 
windows.
Let a sequence A = (a1, …, a6) be a 2x3 
window. A is legal if it represents a legal 
window.
Now we can come up with a formula to say that 
the window top-centered at cell (i, j) is legal.

Don’t be intimidated by this formula!
It’s just counting off the six cells of the 
window and demanding that each be equal to 
the corresponding cell in some legal window.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙.!34.(𝑖, 𝑗) = &
56 7" ,…,7#
9/ .!34.

𝑥),+:0,7" ∧ 𝑥),+,7$ ∧ 𝑥),+;0,7% ∧
𝑥);0,+:0,7& ∧ 𝑥);0,+,7' ∧ 𝑥);0,+;0,7#
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Transitions
A given 2x3 window is legal if it does 
not violate our machine’s transition 
function.
We have a polynomial-sized set of all 
legal windows.
Let a sequence A = (a1, …, a6) be a 
2x3 window. A is legal if it represents 
a legal window.

Since we have a polynomial number of 
legal windows, this formula is also 
polynomial.  So we can say:
flegal (i, j) is satisfied by, and only by, a 
tableau whose window top-centered at 
(i, j) is legal; and is created in 
polynomial time. 

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙.!34.(𝑖, 𝑗) = &
56 7" ,…,7#
9/ .!34.

𝑥),+:0,7" ∧ 𝑥),+,7$ ∧ 𝑥),+;0,7% ∧
𝑥);0,+:0,7& ∧ 𝑥);0,+,7' ∧ 𝑥);0,+;0,7#
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Windows and Configurations

Consider any upper and lower configuration in the 
tableau, so that the lower configuration is the one 
immediately below – that is, following – the upper.
If all the windows top-centered on cells in the upper 
configuration are legal, then:

The legality of the windows that don’t involve the state 
symbol easily ensures the legality of the configuration 
below them.
The window top-centered on the state symbol in the 
upper configuration is sufficient to ensure that the state 
symbol in the lower configuration makes a legal move.

The upper configuration yields the lower one if 
and only if all the windows top-centered on cells 
in the upper configuration are legal – and that 
holds all the way down the tableau.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #
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Windows and Configurations

flegal (i, j) is satisfied by, and only by, a tableau 
whose window top-centered at (i, j) is legal; and 
is created in polynomial time. 
An upper configuration yields a lower one iff all 
the windows top-centered within the upper are 
legal.

This holds all the way down the tableau.
Then we have:

And can say fmove is satisfied by, and only by, 
a tableau that does not violate the machine’s 
transition function; and is created in 
polynomial time.

1 2 3 4 5 6 7 8 9 10
1 # q0 a b c a □ □ □ #
2 # a q1 b c a □ □ □ #
3 # #
4 # #
5 # #
6 # #
7 # #
8 # #
9 # #
10 # #

𝜙.!34.(𝑖, 𝑗) = &
56 7" ,…,7#
9/ .!34.

𝑥),+:0,7" ∧ 𝑥),+,7$ ∧ 𝑥),+;0,7% ∧
𝑥);0,+:0,7& ∧ 𝑥);0,+,7' ∧ 𝑥);0,+;0,7#

𝜙<$=! = )
01)>2! ,
0>+>2!

𝜙.!34.(𝑖, 𝑗)
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Pulling It Together
We have:
fcells is satisfied by, and only by, a 
properly encoded tableau.
fstart is satisfied by, and only by, a 
tableau with the starting configuration of 
M on w encoded as its first row.
faccept is satisfied by, and only by, a 
tableau encoding an accepting 
configuration as one of its rows.
fmove is satisfied by, and only by, a 
tableau that does not violate the 
machine’s transition function.
All are created in polynomial time.

Then fNDTM is satisfied by, and only by, 
a tableau encoding an accepting 
computation history of M on w, and is 
created in polynomial time.

𝜙+,00! = #
%&.,'&(!

𝜙,1+23, 𝑖, 𝑗

𝜙!"#$" = #
%&'&(!

𝑥%,',*"

𝜙#++,-" = %
%&.,'&(!

𝑥.,',/#

𝜙425, = #
%&.6(!,
%6'6(!

𝜙0,7#0(𝑖, 𝑗)

𝜙89:;= 𝜙+,00! ∧ 𝜙!"#$" ∧ 𝜙#++,-" ∧ 𝜙425,
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SAT is NP-Complete

fNDTM created from NDTM M and 
input w is satisfied by, and only by, 
a tableau encoding an accepting 
computation history of M on w, 
and is created in polynomial time.
This means that:

SAT accepts fNDTM if and only if 
such a tableau exists…
…if and only if the NDTM we are 
encoding into fNDTM accepts w.

We’ve just polynomially reduced 
every possible NP language to 
SAT.

Let’s convince ourselves of that a bit 
more.

By definition, any NP language has an 
NDTM M that decides it in polynomial 
time.

We can decide any NP language 
with a result from SAT using the 
following algorithm:
On input <M, w>:

Create fNDTM from M and w.
Run the decider for SAT on fNDTM.
Accept if SAT accepts, reject if it 
rejects.

SAT is NP-complete.

𝜙89:; = 𝜙+,00! ∧ 𝜙!"#$" ∧ 𝜙#++,-" ∧ 𝜙425,
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Cook’s Theorem
• jM,w = fcells Ù fstart Ù faccept Ù fmove

• See the following for another detailed 
description  and discussion of the four 
terms that make up this formula.

• http://www.cs.tau.ac.il/~safra/Complexity/Cook.ppt



NP–Complete
Within a year, Richard Karp added 22 problems to this 
special class.

We will focus on: 
3-SAT
Integer Linear Programming
SubsetSum
Partition
Vertex Cover
Independent Set
K-Color
Multiprocessor Scheduling 

4/11/23 © UCF CS 109



Co-NP
• A problem is in co-NP if its complement is in NP 

– This is like co-RE, with respect to RE problems.

• An example is the problem to determine if a 
Boolean expression is a tautology.
– If the answer to the problem "is B in TAUT ?" is NO, then B is in 

the complement of SAT. 

• A more direct example of a co-NP problem is to 
determine if a Boolean expression is self-
contradictory.
– This is the complement of the notion of satisfiability but not of an 

instance of satisfiability as the complement of an expression in 
SAT can also be in SAT.
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SAT to 3SAT
• 3-SAT means that each clause has exactly three 

terms
• If one term, e.g., (p), expand to (pÚpÚp)
• If two terms, e.g., (pÚq), expand to (pÚqÚp)
• Any clause with three terms is fine
• If n > three terms, can reduce to two clauses, one 

with three terms and one with n-1 terms, e.g., 
(p1Úp2Ú…Úpn) to 
(p1Úp2Úz) & (p3Ú…ÚpnÚ~z), where z is a new 
variable. If n=4, we are done, else apply this 
approach again with the clause having n-1 terms
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3SAT Growth is Linear
• Let’s make sure we have not grown the length of the 

expression going from an instance E of SAT to 
3SAT by more than a polynomial amount. 

• Let N be the number of clauses in E and let n be 
number of variables in E. Worst case length of E is 
then nN literals.

• If a clause in E has k≥3 literals, we want to define 
G(k)=number of literals in the 3SAT version, E’.

• G(3)=3; G(4)=G(3)+G(3)=6; G(5)=G(4)+G(3)=9; 
G(6)=G(5)+G(3)=12;…; G(k)=3(k-2), k≥3.

• The worst case is bounded above by 3nN literals in 
E’ which is polynomial (linear) growth.
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Linear Programming (LP)
• Linear Programming (LP) is like solving a set of linear 

equations but allows not just equality (=) but also 
inequality (>, <, ≥, ≤)

• In fact, LP usually also includes an optimization function, 
but we are limiting ourselves to decision problems

• Example:
x + y > 7
x - y ≥ 4
Has many solutions, some of which are integral, e.g.,
x=7, y=1
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Integer LP (ILP)
• Integer Linear Programming (ILP) just constrains the 

solutions to an LP problem to be integral values
• This constraint, on the surface, may seem to make the 

problem easier but, in fact, makes it harder
• This is even true when we view this as a decision 

problem where we just ask 
“Is there a solution to this instance of ILP”

• We will see this complexity play out in the next few slides

4/11/23 © UCF CS 114



0-1 ILP
• 0-1 ILP constrains the solution space to variable values of 0 or 1
• Start with an instance of SAT (or 3SAT), assuming 

variables v1,…, vn and clauses c1,…, cm
• For each variable vi, have the constraint that 0 ≤ vi ≤ 1
• For each clause we provide a constraint that it must be satisfied 

(evaluate to at least 1). For example, if clause cj is 
v2 ∨ ~v3 ∨ v5 ∨ v6            then add the constraint 
v2 + (1-v3) + v5 + v6 ≥ 1

• A solution to this set of integer linear constraints implies a solution to 
the instance of SAT and vice versa

• Note this works for any SAT instance not just 3SAT
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0-1 ILP is NP-Complete
• Previous page just show 0-1 ILP is NP-

Hard
• Must show it is in NP
• Can do by trying all 2k 0-1 assignments to 

k variables
• Or can show that verifying a solution is in 

P – it’s really just linear
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0-1 ILP Example
• Original SAT: E = (a+b+~c+d+e)(~b)(~a+~d)(b+c+~e)
• 0 £ a £ 1; 0 £ b £ 1; 0 £ c £ 1; 

0 £ d £ 1; 0 £ e £ 1
• a+b+(1-c)+d+e ≥ 1; 

alternatively, a+b-c+d+e ≥ 0
• 1-b ≥ 1; 

alternatively, b = 0
• (1-a)+(1-d) ≥ 1; 

alternatively, a+d £ 1
• b+c+(1-e) ≥ 1; 

alternatively, b+c-e ≥ 0
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What about ILP?
• As we said, ILP just constrains the solution 

to integers not to binary values
• Clearly ILP is NP-Hard as the constrained 

version of 0-1 ILP is NP-Hard
• Showing ILP is in NP is easy using a 

verifier; you give me a proposed solution 
and I can check it in linear time
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What about Linear 
Programming (LP) #1?

• Linear programming just requires that 
solution be real number values

• The only constraints are in the 
simultaneous inequalities (and equalities)

• If you limit LP to equalities, then it has a 
well-known complexity of O(N3) using 
Gaussian Elimination or one of its variants
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What about Linear 
Programming (LP) #2?

• The problem of solving LP appeared to be exponential 
for a long time and was, and still is, generally attacked 
using the Simplex Method which involves adding slack 
variables, e.g., 
x + y < 7 iff x + y + e = 7 for some e > 0 and 
x + y ≤ 7 iff x + y + f = 7 for some f ≥ 0

• One can show cases where the Simplex Method takes 
exponential time, but its average case is O(N√d) time 
where N is the number of variables and d is bounded 
above by the size of the input in bits
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What about Linear 
Programming (LP) #3?

• In 1984, LP was shown to be of polynomial complexity
• Complexity is O(N3.5 L lg L lglg L) where N is number of 

variables and L is the size of the input in bits
• Simplex is still used much as QuickSort is used for 

sorting even though its worst case is O(N2) as its 
expected performance is O(N lg N) and it often 
converges in O(N)

• Note neither Simplex nor QuickSort are heuristics as 
each gives the correct result. I bring that up as later we 
will talk about heuristics for NP-Hard problems. There 
are some nice cases and some strange ones.

4/11/23 © UCF CS 121



SubsetSum
S = {s1, s2, …, sn} 

set of positive integers
and an integer G.

Question: Does S have a subset whose 
values sum to the goal G?

Note: This is really a Bag (Multiset) not a Set
No one knows of a polynomial algorithm.
{No one has proven there isn’t one, either!!}
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SubsetSum is in NP
• You give me a “solution” to [ {s1, s2, …, sn}, G ]
• Your solution is just a subset of the set of integers {1 .. n}
• I make sure that each number you give me is unique and in 

the correct range (that takes me n units of time). If not, I reject 
your “solution”

• I then add the selected numbers together. That takes the sum 
of  the log based 2 of the numbers you selected. I then check 
that the sum equals G. If so, I verify; if not, I reject.

• Note that the original representation is of length the sum of 
the log based 2 of the si’s and G so my growth of time is 
linear

• Thus, I can verify in polynomial time 



Example SubsetSum
• Instance

[(15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2), 57]
• A solution is 15, 17, 11, 12, 2 (or with indices just 1,2,4,6,11)
• Note that an item can only be chosen once
• Note that we can try a heuristic like sorting low to high

[(2, 4, 5, 6, 11, 12, 15, 17, 21, 27, 33), 57]
• But an attack with that might have us choose 

2, 4, 5, 6, 11, 12, 15 and we are stuck
• In above, one can backtrack to remove 15 and replace by 17 works, 

but backtracking is in general exponential
• Try high to low [(33, 27, 21, 17, 15, 12, 11, 6, 5, 4, 2), 57]

33, 27 (Fail), 33, 21, 17 (Fail), 33, 21, 15 (Fail), etc.
• Clearly all these are potentially exponential approaches
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SAT ≤P 3SAT ≤P 
SubsetSum ≡p Partition

Theorem. SAT ≤P 0-1ILP ≤P ILP
Theorem. SAT ≤P 3SAT
Theorem. 3SAT ≤P SubsetSum
Theorem. SubsetSum ≤P Partition
Theorem. Partition ≤P SubsetSum (for fun)

Therefore, not only is SAT in NP–Complete, 
but so are 0-1ILP, ILP,  3SAT, Partition, and 
SubsetSum.
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3SAT ≤p SubsetSum
Assuming a 3SAT expression (a + ~b + c) (~a + b + ~c)

a b c a+~b+c ~a+b+~c
a 1 0 0 1 0

~a 1 0 0 0 1
b 0 1 0 0 1

~b 0 1 0 1 0
c 0 0 1 1 0

~c 0 0 1 0 1
C1 0 0 0 1 0
C1’ 0 0 0 1 0
C2 0 0 0 0 1
C2’ 0 0 0 0 1

1 1 1 3 3
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SubsetSum Matrix
• One column per variable and one column per clause
• Two rows per variable (true/false so only one can be 

chosen per variable) and two rows per clause (optional 
pads to get to 3’s in clause columns, provided we are 
already at least a 1).

• Each row is a number and summing them never results 
in carry to next column, so each column is independent 
of other and only influenced by rows we select.

• Goal of 1 … 1 3… 3 forces one choice (true or false per 
variable) and satisfiability for every clause (must have a 
1 in at least one variable row of each clause column )
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How it works
• Satisfying (a + ~b + c) (~a + b + ~c)
• Make a, b and c true (satisfies)

Rows a, b and c get us 11121
Padding with C1, C2 and C2’ gets 11133

• Make a, ~b and c true (does not satisfy)
Rows a, ~b and c get us 11130
No amount of padding can get the last 
column to be 3 (2 is max)
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Partition
• Given a Multiset S = {s1, s2, …, sn}, where 

each si is a positive integer, can we 
partition it into two sub-bags P1, P2 such 
that P1 ∪ P2 = S and P1 ∩ P2 = ∅ ?

• Note: If S contains multiple copies of some 
integer, each is considered distinct and 
thus does not unduly influence the 
intersection and union operators above
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SubsetSum≡pPartition Details
• Partition is polynomial equivalent to SubsetSum

– Let i1, i2, .., in , G be an instance of SubsetSum. This 
instance has answer “yes” iff
i1, i2, .., in , 2*Sum(i1, i2, .., in ) – G,Sum(i1, i2, .., in ) + G
has answer “yes” in Partition. Here we assume that 
G ≤ Sum(i1, i2, .., in ), for, if not, the answer is “no.”

– Let i1, i2, .., in be an instance of Partition. This instance 
has answer “yes” iff
i1, i2, .., in , Sum(i1, i2, .., in )/2 
has answer “yes” in SubsetSum
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SubsetSum ≡p Partition
• [(15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2), 57]
• A solution is 15, 17, 11, 12, 2 
• Sum of all is 153
• Mapping to Partition is

– (15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 306-57, 153+57)
– (15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 249, 210)
– (15+17+11+12+2+249) = 306
– (27+4+33+5+6+21+210) = 306

• Going other direction map above to 
– [(15, 17, 27, 11, 4, 12, 33, 5, 6, 21, 2, 249, 210), 306]
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VERTEX COVERING (VC) 
DECISION PROBLEM IS NP-HARD
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3SAT to Vertex Cover
• Vertex cover seeks a set of vertices that cover every edge in some 

graph
• Let I3-SAT be an arbitrary instance of 3-SAT. For integers n and m, 

U = {u1, u2, …, un} and Ci = {zi1, zi2, zi3} for 1 ≤ i ≤ m, 
where each zij is either a uk or uk' for some k.

• Construct an instance of VC as follows.
• For each i, 1 ≤ i ≤ n, construct two vertices, ui and ui' with an edge 

between them.
• For each clause Ci = {zi1, zi2, zi3}, 1 ≤ i ≤ m, construct three vertices zi1, 

zi2, and zi3 and form a "triangle on them. Each zij is one of the Boolean 
variables uk or its complement uk'. Draw an edge between zij and the 
Boolean variable (whichever it is). Each zij has degree 3. Finally, set k 
= n+2m.

• Theorem. The given instance of 3-SAT is satisfiable if and only if the 
constructed instance of VC has a vertex cover with at most k vertices.
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VC Variable Gadget

X ~X
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To cover the edge in between x and ~x, at least one of these must be chosen



VC Clause Gadget

a ~c

b

a + b + ~c
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To cover the edges here, at least two of three vertices must be chosen



VC Gadgets Combined
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Goal is to cover all variables (really edges) with v + 2c nodes (minimum needed); 
v=#variables; c = #clauses; for above that is 2 + 2*3 = 8: Light blue are choices



Why VC Gadgets Work
• For each variable gadget, we must either choose the variable or its 

complement to cover the edge connecting them; Choosing both is 
wasteful

• For each clause gadget, we must cover its internal edges. This 
requires 2 per clause, but also need to cover all edges entering from 
variable gadgets, if not already covered by the selection of the 
corresponding variable gadget

• If we can cover all edges, with just v+2c nodes then we have 
attained the minimum possible and guaranteed that each clause has 
at least one of its literals true. This allows the corresponding variable 
selection (true/false) to cover the incoming edge allowing the three 
internal edges to be covered by the other two variable nodes in the 
clause. If more than one literal is covered, you have a choice of 
which covered internal node to not choose for the clause gadget
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Explaining Example
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Solution choses ~x1, x2; By choosing those variable gadget nodes we cover both 
variable gadgets. We know we must cover all clause gadgets and the edges entering 
them from the variable gadgets. For the first clause, we do not need to cover the edge 
entering from variable gadget x2, but we must cover the other two external edges and the 
three internal edges. Choosing the two x1 nodes in clause 1 covers all external and 
internal edges. Had we chosen ~x1 in the x1 variable gadget and ~x2 in the x2 variable 
gadget we would have had to chose x2 in the first clause gadget thereby exceeding our 
quota of v + 2c. I leave it to you to see why the others work and to understand why we 
had no actual constraints in the third clause gadget (any two would have worked).



VC Just the Gadgets
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a ~a

~b

b ~b c ~c

~ca

b

~c~a

~b

c~a

Requires |V| + 2*|C|
Trivial to reach goal if no other edges

(a,~b,~c)(~a,b,~c)(~a,~b,c)



VC + Variable/Clause Edges
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a ~a

~b

b ~b c ~c

~ca

b

~c~a

~b

c~a

GOAL = 3 + 3*2 = 9
The choice of variable assignments influences which 

nodes in clauses must be chosen to cover external edges 

(a,~b,~c)(~a,b,~c)(~a,~b,c)



VC with Forced Solution
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a ~a

~b

b ~b c ~c

~ca

b

~c~a

~b

c~a

GOAL = 3 + 3*2 = 9
Assignment is a, b, c

(a,~b,~c)(~a,b,~c)(~a,~b,c)



VC Partially Forced Soln
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a ~a

~b

b ~b c ~c

~ca

b

~c~a

~b

c~a

(a,~b,~c)(~a,b,~c)(~a,~b,c)

GOAL = 3 + 3*2 = 9
Assignment is ~a, ~b, ~c



VC Ex#2 Bad Assign

4/11/23 © UCF CS 143

GOAL = 3 + 3*2 = 9
Assignment is ~a, b, c

FAIL!!!

(a,~b,~c)(~a,b,~c)(~a,~b,c)

a ~a

~b

b ~b c ~c

~ca

b

~c~a

~b

c~a



Independent Set
• Independent Set

– Given Graph G = (V, E), a subset S of the vertices is 
independent if there are no edges between vertices in 
S

– The k-IS problem is to determine for a k>0 and a 
graph G, whether G has an independent set of k 
nodes

• Note there is a related NP-Hard optimization 
problem to find a Maximum Independent Set. It 
is even hard to approximate a solution to the 
Maximum Independent Set Problem.
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IS (VC) Clause Gadget
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a ~c

a + b + ~c

b



3SAT to IS
(a + ~b + c) (~a + b + ~c)(a + b + c), k=3 
(k=number of clauses, not variables)

a c

~b
~a ~c

b

a c

b
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Explaining the example

In each clause gadget we can only chose one node, else we would be 
choosing two nodes with a shared edge. Assume we select a in clause 
1, we cannot choose ~a in any other clause as they have a shared 
edge. After choosing a in clause 1, we could choose either b or ~c in 
clause 2. Assume we select ~c in clause 2, we cannot choose c in any 
other clause as they have a shared edge. To reach three (the number 
of clauses, we need a choice left for clause 3. Fortunately, we have two 
choices, either a or b (I chose b in this case).
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a c

~b

~a ~c

b

a c

b



K-COLOR (KC) DECISION 
PROBLEM IS NP-HARD
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K-Coloring
Given: 
A graph G = (V, E) and an integer k.
Question: 
Can the vertices of G be assigned colors 
from a palette of size k, so that adjacent 
vertices have different colors and use at 
most k colors?

3Coloring (3C) uses k=3
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3C Super Gadget

T F

B
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3C Super + Variables Gadget
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A Simple OR Gadget
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?



What if a, b?
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?



What if a, b, T?
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T

B

F



What if a, b, F?
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F

B

?



What if a, b, B?
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B

F

?



What if ~a, ~b?
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?



What if ~a, ~b, F?
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F

B

T



What if ~a, ~b, T?
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T

B

?



What if ~a, ~b, B?
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B

T

?



What if a, ~b?

4/11/23 © UCF CS 161

?



What if a, ~b, T?
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T

B

F



What if a, ~b, B?
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B

T

F



What if a, ~b, F?
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F

T

B



What if ~a, b? same as a, ~b
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B/T/
F



3C Clause Gadget
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Consider a, b, c

T
T

F

B

T
B/F

F/BT

T
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Consider a, b, ~c

F
T

B

F

T
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Consider ~a, b, c or a, ~b, c

T
T

F

B

T/B/F

F

T
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Consider ~a, b, ~c or a, ~b, ~c

F
T

B

F

T/B/F

F

T
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Consider ~a, ~b, c

T
T

F

B

F

F

F
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Consider ~a, ~b, ~c

F
T

B

F

F
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F

F

X



KC Gadgets Combined

B

K = 3

(u + ~v + w) (v + x + ~y)

4/11/23 © UCF CS 173



Register Allocation
• Liveness: A variable is live if its current assignment may be used at 

some future point in a program’s flow
• Optimizers often try to keep live variables in registers
• If two variables are simultaneously live, they need to be kept in 

separate registers
• Consider the K-coloring problem (can the nodes of a graph be colored 

with at most K colors under the constraint that adjacent nodes must 
have different colors?)

• Register Allocation reduces to K-coloring by mapping each variable to 
a node and inserting an edge between variables that are 
simultaneously live

• K-coloring reduces to Register Allocation by interpreting nodes as 
variables and edges as indicating concurrent liveness

• This is a simple mapping because it’s an isomorphism
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Live Variable Analysis
Code
a = 1; 
b = 2;
c = a * b;
d = a + 3; 
e = c * 2;
f  = e / c;
Print e, f;

No Optimization
T1 = 1 
T2 = 2 
T3 = T1 * T2 
T4 = T1 + 3 
T5 = T3 * T4
T6 = T5 / T3
OUT T5
OUT T6
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T1

T4 T5

T2
T3

Minimum colors are 3 
so need 3 registers to 
avoid spilling to 
memory and reloading

T6



PROCESSOR SCHEDULING
IS NP-HARD
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Processor Scheduling
• A Process Scheduling Problem can be described by 
– m processors P1, P2, …, Pm,
– processor timing functions S1, S2, …, Sm, each describing how the 

corresponding processor responds to an execution profile,
– additional resources R1, R2, …, Rk, e.g., memory
– transmission cost matrix Cij (1 £ i , j £ m), based on proc. data sharing,
– tasks to be executed T1, T2, …, Tn,
– task execution profiles A1, A2, …, An,
– a partial order defined on the tasks such that Ti < Tj means that Ti must 

complete before Tj can start execution,
– communication matrix Dij (1 £ i , j £ n); Dij can be non-zero only if Ti < 

Tj,
– weights W1, W2, …, Wn -- cost of deferring execution of task.
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Complexity Overview
• The intent of a scheduling algorithm is to minimize the sum of 

the weighted completion times of all tasks, while obeying the 
constraints of the task system. Weights can be made large to 
impose deadlines.

• The general scheduling problem is quite complex, but even 
simpler instances, where the processors are uniform, there are 
no additional resources, there is no data transmission, the 
execution profile is just processor time and the weights are 
uniform, are very hard.

• In fact, if we just specify the time to complete each task and we 
have no partial ordering, then finding an optimal schedule on 
two processors is an NP-complete problem. It is essentially the 
optimization version of the Partition or equally can be viewed 
as a SubsetSum problem. 
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2 Processor Scheduling
The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2 
processors with an empty partial order < is the same as that of 
dividing a set of positive whole numbers into two subsets, such that 
the numbers are as close to evenly divided.  So, for example, given the 
numbers
3, 2, 4, 1
we could try a “greedy” approach as follows:
put 3 in set 1
put 2 in set 2
put 4 in set 2 (total is now 6)
put 1 in set 1 (total is now 4)
This is not the best solution.  A better option is to put 3 and 2 in one 
set and 4 and 1 in the other.  Such a solution would have been attained 
if we did a greedy solution on a sorted version of the original 
numbers.  In general, however, sorting doesn’t work. 
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2 Processor Nastiness
Try the unsorted list (result is no worse than opt * (2-1/m))
7, 7, 6, 6, 5, 4, 4, 5, 4
Greedy (Always in one that is least used)
7, 6, 5, 5 = 23
7, 6, 4, 4, 4 = 25
Optimal
7, 6, 6, 5 = 24
7, 4, 4, 4, 5 = 24
Sort it (non-increasing) (opt * (4/3-1/3m)) Sort it (non-decreasing) (opt*(2-1/m))
7, 7, 6, 6, 5, 5, 4, 4, 4 4, 4, 4, 5, 5, 6, 6, 7, 7
7, 6, 5, 4, 4 = 26 4, 4, 5, 6, 7 = 26
7, 6, 5, 4 = 22 4, 5, 6, 7 = 22

Both sorts are even worse than greedy unsorted !! (not a general result)
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Challenge Problem
Consider the simple scheduling problem where we have a set of independent tasks 
running on a fixed number of processors, and we wish to minimize finishing time.
How would a list (first fit, no preemption) strategy schedule tasks with the following IDs 
and execution times onto four processors?  Answer using Gantt chart.
(T1,4) (T2,1) (T3,3) (T4,6) (T5,2) (T6,1) (T7,4) (T8,5) (T9,7) (T10,3) (T11,4) (2-1/m)

Now show what would happen if the times were sorted non-decreasing. (2-1/m)

Now show what would happen if the times were sorted non-increasing. (4/3-1/3m)
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2 Processor with partial order
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Anomalies everywhere
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More anomalies
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Critical path or level strategy
A UET is a Unit Execution Tree.  Our Tree is funny.  It has a 
single leaf by standard graph definitions.

1. Assign L(T) = 1, for the leaf task T
2. Let labels 1, …, k-1 be assigned.  If T is a task with lowest 

numbered immediate successor then define L(T) = k (non-
deterministic)
This is an order n labeling algorithm that can easily be 
implemented using a breadth first search.

Note: This can be used for a forest as well as a tree.  Just add a 
new leaf.  Connect all the old leafs to be immediate parents of the 
new one.  Use the above to get priorities, starting at 0, rather than 
1.  Then delete the new node completely.
Note: This whole thing can also be used for anti-trees.  Make a 
schedule, read it backwards.  You cannot just reverse priorities. 
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Level strategy and UET
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Theorem:  Level Strategy is optimal for unit execution, m arbitrary, forest 
precedence 



Level – DAG with unit time 
1. Assign L(T) = 1, for an arbitrary leaf task T
2. Let labels 1, …, K-1 be assigned.  For each task T such that

{ L(T’) is defined for all T’ in Successor(T) = S(T) }

Let N(T) be decreasing sequence of set members in
{L(T’) | T’ is in S(T)}

Choose T* with least N(T*).
Define L(T*) = K.
This is an order n2 labeling algorithm. Scheduling with it involves n union / 
find style operations.  Such operations have been shown to be 
implementable in nearly constant time using an “amortization” algorithm.

Theorem: Level Strategy is optimal for unit execution, m=2, dag precedence. 
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Thought Experiment
Looking back at the UET example, consider adding two additional 
tasks numbered 15 and 16 that are siblings of 13 and 14. These 
four tasks must be completed before 12 is started. 
a) Show the Gantt chart that reflects the new schedule associated 
with this enhanced tree
b) Show the Gantt chart that is associated with the corresponding 
anti-tree, in which all arcs are turned in the opposite direction. Use 
the technique of reversing the schedule from (a)
c) Show the Gantt chart associated with the anti-tree of b), where 
we now use the priorities obtained by treating lower numbered 
tasks as higher priority ones
d) Comment on the results seen in (b) versus (c), providing insight 
as to why they are different and why one is better than the other.

4/11/23 © UCF CS 188



UNIVERSE OF SETS

NP Co-NPPNP-
Complete



HAMILTONIAN CIRCUIT (HC) 
DECISION PROBLEM IS NP-HARD
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Hamiltonian Path/Circuit
• A Hamiltonian Path is a path through a graph 

from one node ‘start’ to another node ‘end’ that 
visits every node in the graph just once.

• A Hamiltonian Circuit is a Hamiltonian Path 
whose end node is adjacent to its start node. It 
can also be viewed that the start and end nodes 
are the same and that the only repeated node is 
the start node with its only repetition being at the 
end of the path.
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HC Variable Gadget
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This has many Hamiltonian Circuits



HC Gadgets Combined
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This has a Hamiltonian Circuit iff all clauses are satisfied with consistent 
assignments to each variable. Note left to right assigns Xi as true; right to left 
assigns ¬Xi as true. There are filler nodes on left and right and between clauses.

We will set convention on xi true to be left to right and xi false to be right to 
left (can fix for opposite)



Hamiltonian Path
• Note we can split an arbitrary node, v, into 

two (v’,v’’) – one, v’, has in-edges of v, 
other, v’’, has out-edges. Path (not cycle) 
must start at v’’ and end at v’ and goal is 
still K (the number of vertices).
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Travelling Salesman
• Travelling Salesman Problem:

Given a list of cities and the distances between 
each pair of cities, what is the shortest possible 
route that visits each city and returns to the 
origin city?

• This is a Hamiltonian Cycle with weights on 
edges and we seek minimum weight for cycle.

• The decision problem version involves setting a 
goal weight, L, and asking if we can achieve it.
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Travelling Salesman and HC
• Start with HC = (V,E), K=|V|
• Set edges from HC instance to 1
• Add edges between pairs that lack such 

edges and make those weights 2 (often 
people make these K+1); this means that 
the reverse of unidirectional links also get 
weight 2

• Goal weight is K for cycle
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Knapsack 0-1 Problem
� The goal is to 

maximize the value of 
a knapsack that can 
hold at most W units 
(i.e. lbs or kg) worth of 
goods from a list of 
items I0, I1, … In-1. 
◦ Each item has 2 

attributes:
1) Value – let this be vi for 

item Ii
2) Weight – let this be wi for 

item Ii
Thanks to Arup Guha
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Knapsack 0-1 Problem
� The difference 

between this problem 
and the fractional 
knapsack one is that 
you CANNOT take a 
fraction of an item.

◦ You can either take it 
or leave it.

◦ Hence the name 
Knapsack 0-1 
problem.
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Knapsack Optimize vs Decide
• The optimization problem is to have the 

sum of the chosen values, vi, to be as 
large as possible with the constraint that 
the sum of the corresponding weights, wi, 
cannot exceed W.

• We can restate as decision problem to 
determine if there exists a set of items, 
each with equal weights and values < W, 
that reaches some fixed goal value, W.
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Knapsack and SubsetSum
• Let vi = wi for each item Ii.
• By doing so, the value is maximized when the 

Knapsack is filled as close to capacity.
• The related decision problem is to determine if 

we can attain capacity (W).
• Clearly then, given an instance of the 

SubsetSum problem, we can create an instance 
of the Knapsack decision problem problem, such 
that we reach the goal sum, G, iff we can attain 
a Knapsack value of G.  
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Knapsack Decision Problem
• The reduction from SubsetSum shows that 

the Knapsack decision problem is at least 
as hard as SubsetSum, so it is NP-
Complete if it is in NP.

• Think about whether or not it is in NP.
• Now, think about the optimization problem. 
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Related Bin Packing
• Have a bin capacity of B.
• Have item set S = {s1, s2, …, sn} 
• Use all items in S, minimizing the number of 

bins, while adhering to the constraint that any 
such subset must sum to B or less.

• This is similar to the processor scheduling 
problem without constraints, except we optimize 
on number of processors, not finishing time for 
all tasks. It is NP-Hard (WHY?)
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Knapsack 0-1 Problem
• Brute Force

– The naïve way to solve the 0-1 Knapsack 
problem is to cycle through all 2n subsets of 
the n items and pick the subset with a legal 
weight that maximizes the value of the 
knapsack.

– We can come up with a dynamic 
programming algorithm that is USUALLY 
faster than this brute force technique.
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Knapsack 0-1 Problem
� We are going to solve the problem in terms of 

sub-problems and memoization (dynamic 
programming).

� Our first attempt might be to characterize a sub-
problem as follows:
◦ Let Sk be the optimal subset of elements from 

{I0, I1, …, Ik}.  
� What we find is that the optimal subset from the elements {I0, 

I1, …, Ik+1} may not correspond to the optimal subset of 
elements from {I0, I1, …, Ik} in any regular pattern.

◦ Basically, the solution to the optimization problem for 
Sk+1 might NOT contain the optimal solution from 
problem Sk.
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Knapsack 0-1 Problem
� Let’s illustrate that point with an example:

Item Weight Value
I0 3 10
I1 8 4
I2 9 9
I3 8 11

� The maximum weight the knapsack can hold is 20.

� The best set of items from {I0, I1, I2} is {I0, I1, I2}  
� BUT the best set of items from {I0, I1, I2, I3}  is {I0, I2, I3}. 
◦ In this example, note that this optimal solution, {I0, I2, I3}, does 

NOT build upon the previous optimal solution, {I0, I1, I2}. 
� (Instead it builds upon the solution, {I0, I2}, which is really the optimal 

subset of   {I0, I1, I2}  with weight 12 or less.)
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Knapsack 0-1 problem
� So now we must re-work the way we build upon previous sub-

problems…
◦ Let B[k, w] represent the maximum total value of a subset Sk with 

weight w. 
◦ Our goal is to find B[n, W], where n is the total number of items and W 

is the maximal weight the knapsack can carry.

� So our recursive formula for subproblems:
B[k, w]   = B[k - 1,w], if wk > w

= max { B[k - 1,w], B[k - 1,w - wk] + vk}, otherwise

� In English, this means that the best subset of Sk that has total weight 
w is:
1) The best subset of Sk-1 that has total weight w, or
2) The best subset of Sk-1 that has total weight w-wk plus the item k
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Knapsack 0-1 Problem –
Recursive Formula

� The best subset of Sk that has the total weight w, 
either contains item k or not.

� First case:  wk > w
◦ Item k can’t be part of the solution!  If it was the total weight 

would be > w, which is unacceptable.

� Second case:  wk ≤ w 
◦ Then the item k can be in the solution, and we choose the 

case with greater value.
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B[k, w] = B[k - 1,w], if wk > w
= max { B[k - 1,w], B[k - 1,w - wk] + vk}, otherwise



Knapsack 0-1 Algorithm

for w = 0 to W // Initialize 1st row to 0’s
B[0,w] = 0

for i = 1 to n // Initialize 1st column to 0’s
B[i,0] = 0

for i = 1 to n 
for w = 1 to W

if wi <= w //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w
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Knapsack 0-1 Problem
� Let’s run our algorithm on the following 

data:
◦ n = 4 (# of elements)
◦ W = 5 (max weight)
◦ Elements (weight, value):

(2,3), (3,4), (4,5), (5,6)
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Knapsack 0-1 Example
i / w 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0
2 0
3 0
4 0

// Initialize the base cases
for w = 0 to W

B[0,w] = 0

for i = 1 to n
B[i,0] = 0

4/11/23 © UCF CS 210



Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 1
w-wi = -1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0
2 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 2
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3
2 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 3
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3
2 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 4
w-wi = 2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3
2 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 1
vi = 3
wi = 2
w = 5
w-wi = 3

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 1
w-wi = -2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 2
w-wi = -1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 3
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 4
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 2
vi = 4
wi = 3
w = 5
w-wi = 2

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 1..3
w-wi = -3..-1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 4
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5
4 0

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 3
vi = 5
wi = 4
w = 5
w-wi = 1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0

i = 4
vi = 6
wi = 5
w = 1..4
w-wi = -4..-1

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5

if  wi <= w   //item i can be in the solution
if vi + B[i-1,w-wi] > B[i-1,w]

B[i,w] = vi + B[i-1,w- wi]
else

B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // wi > w

i = 4
vi = 6
wi = 5
w = 5
w-wi = 0

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7
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Knapsack 0-1 Example
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

i / w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 4 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7

We’re DONE!!  
The max possible value that can be carried in this knapsack is $7
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Knapsack 0-1 Problem – Run 
Timefor w = 0 to W

B[0,w] = 0

for i = 1 to n
B[i,0] = 0

for i = 1 to n
for w = 0 to W

< the rest of the code >

What is the running time of this algorithm?
O(n*W) – of course, W can be mighty big
What is an analogy in world of sorting?

Remember that the brute-force algorithm takes: O(2n)

O(W)

O(W)

Repeat n times

O(n)
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Tiling

Undecidable, NP-Complete, and 
Easy Variants



Basic Idea of Tiling
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A single tile has colors on all four sides.
Tiles are often called dominoes as 
assembling them follows the rules of
placing dominoes. That is, the color 
(or number) of a side must match that
of its adjacent tile, e.g., tile, t2, to right 
of a tile, t1, must have same color on
Its left as is on the right side of t1.
This constraint applies to top and bottom as 
well as sides. Boundary tiles do not necessarily
have constraints on their sides that touch
the boundaries, but these can be forced.

I chose to have each tile have a mirror tile
in the vertical and horizontal directions.



Instance of Tiling Problem
• A finite set of tile types (a type is determined by 

the colors of its edges)
• Some 2d area (finite or infinite) on which the tiles 

are to be laid out
• An optional starting set of tiles in fixed positions
• The goal is to tile the plane following the 

adjacency constraints and whatever constraints 
are indicated by the starting configuration.
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A Valid 3 by 3 Tiling of Tile 
Types from a Previous Slide
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Some Variations
• Infinite 2d plane (impossible, co-re-non-rec) in general

– Our four tile types can easily tile the 2d plane
• Finite 2d plane (hard in general)

– Our four tile types can easily tile any finite 2d plane
– This is called the Bounded Tiling Problem

• One-dimensional space
– This is related to cycles in a directed graph 

Each tile type A is a vertex
if tile A has right color c and tile B has left color c then draw a 
directed edge form vertex A to vertex B
There’s a cycle iff we can infinitely tile along x-axis
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Tiling the Plane
• We will start with a Post Machine, M = (Q, Σ, δ, q0), with tape 

alphabet Σ = {0,1} where 0 is blank and δ maps pairs from Q×Σ to 
Q×(Σ È {R,L}). M starts in state q0
– (Turing Machine with each action being L, R or Print)

• We will consider the case of M starting with a blank tape
• We will constrain our machine to never go to the left of its starting 

position (semi unbounded tape)
• We will mimic the computation steps of M
• Termination occurs if in state q reading b and δ(q,b) is not defined
• We will use the fact that halting when starting at the left end of a 

semi unbounded tape in its initial state with a blank tape is 
undecidable; we will actually look at complement of this
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The Tiling Decision Problem
• Given a finite set of tile types and a 

starting tile in lower left corner of 2d plane, 
can we tile all places in the plane?

• A place is defined by its coordinates (x,y), 
x≥0, y≥0

• The fixed starting tile is at (0,0)
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Colors
• Given M, define our tile colors as 
• {X, Y, *, 0, 1, Y0, Y1} È Q×{0,1} È Q×{Y0,Y1} 
È Q×{R,L}

• X appears only on bottom of any and all tiles that 
are resting on the X-axis

• Y appears only on left of as part of any and all 
tiles that are adjacent to the Y-axis

• Y is part of the label on top of any tile with its left 
side adjacent to the Y-axis
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Simple Tiles
• Simplest tile (represents Blank on X axis)

• Start tile (state q0; scanned symbol blank)
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0
00

X

q0,Y0
0Y

X

Note that the only tile with 0 on the left is the 
above one, leading to all blanks along X axis

Note that a single tile is used for state and 
scanned square

Note that these can lead to an unbounded 
linear replication of blanks



Tiles for Copying Tape Cell
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0
**

0

Y0
*Y

Y0

Copy cells not on
left boundary except the 
scanned square

1
**

1

Y1
*Y

Y1

Copy cells on
left boundary except the 
scanned square



Right Move δ(q,a) = (p,R)
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Ya
p,RY

q,Ya

a
p,R*

q,a

p,b
*p,R

b

where bÎΣ={0,1}



Left Move δ(q,a) = (p,L)
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p,Yb
p,LY

Yb

p,b
p,L*

b

a
*p,L

q,a

where bÎΣ={0,1}

No possibility of moving left if at the left end



Print δ(q,a) = (p,c)
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p,Yc
*Y

q,Ya

p,c
**

q,a



Corner Tile and Bottom Row
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q0,Y0
0Y

X

Zero-ed Row is forced to be

q0,Y0
0Y

X

B
00

X

0
00

X………...



First Action Print
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p,Ya
*Y

q0,Y0

As we cannot move left of leftmost character first action is either right or print. 
Assume for now that δ(q0,0) = (p,a)

q0,Y0
0Y

X

0
00

X

0
00

X………...

0
**

0

0
**

0………...



First Action Right Move
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Y0
p,RY

q0,Y0

As we cannot move left of leftmost character first action is either right or print. 
Assume for now that δ(q0,0) = (p,R)

q0,Y0
0Y

X

0
00

X

0
00

X………...

p,0
*p,R

0

0
**

0………...



The Rest of the Story Part 1
• Inductively we can show that, if the i-th

row represents an infinite transcription of 
the Turing configuration after step i then 
the (i+1)-st represents such a transcription 
after step i+1. Since we have shown the 
base case, we have a successful 
simulation.
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The Rest of the Story Part 2
• Consider the case where M eventually 

halts when started on a blank tape in state 
q0. In this case we will reach a point where 
no actions fill the slots above the one 
representing the current state. That means 
that we cannot tile the plane.

• If M never halts, then we can tile the plane 
(in the limit).
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The Rest of the Story Part 3
• The consequences of Parts 1 and 2 are 

that Tiling the plane is as hard as the 
complement of the Halting problem 
("t [~STP(M, 0, t)]) //0 (tape is blank)
which is co-RE Complete.

• This is not surprising as this problem 
involve a universal quantification over all 
coordinates (x,y) in the plane.
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Constraints on M
• The starting blank tape is not a real constraint as we can create M 

so its first actions are to write arguments on its tape.
• The semi unbounded tape is not new. If you look back at Standard 

Turing Computing (STC), we assumed there that we never moved 
left of the blank preceding our first argument.

• If you prefer to consider all computation based on the STC model, 
then we can add to M the simple prologue
(R1)x1R(R1)x2R…(R1)xkR so the actual computation starts with a 
vector of x1 … xk on the tape and with the scanned square as the 
blank to the right of this vector. The rest of the tape is blank.

• Think about how, in the preceding pages, you could start the tiling in 
this configuration.
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Bounded Tiling Problem #1
• Consider a slight change to our machine M. First, it is non-

deterministic, so our transition function maps to sets.
• Second, we add two auxiliary states 

{qa, qr}, where qa is our only accept state and qr is our only reject 
state.

• We make it so the reject state has no successor states, but the 
accept state always transitions back to itself rewriting the scanned 
square unchanged.

• We also assume our machine accepts or rejects in at most nk steps, 
where n is the length of its starting input which is written immediately 
to the right of the initial scanned square.
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Bounded Tiling Problem #2
• We limit our rows and column to be of size 

nk+1. We change our initial condition of the tape 
to start with the input to M. Thus, it looks like

• Note that there are nk – n of these blank representations 
at the end. 
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q0,Y0
0Y

X

x0
00

X

0
00

X…

Xn-1
00

X …



Bounded Tiling Problem #3
• The finitely bounded Tiling Problem we just described mimics the 

operation of any given polynomially-bound non-deterministic Turing 
machine (this could have been our starting point, rather than SAT). 

• This machine can tile the finite plane of size 
(nk+1) * (nk+1) just in case the initial string is accepted in nk or fewer 
steps on some path (really a trace of at most nk). 

• If the string is not accepted, then we will hit a reject state on all 
paths and never complete tiling.(assume reject occurs in < nk time)

• This shows that the bounded tiling problem is NP-Hard
• Is it in NP? Yes. How? Well, we can be shown a tiling (posed 

solution takes space polynomial in n) and check it for completeness 
and consistency (this takes linear time in terms of proposed 
solution). Thus, we can verify the solution in time polynomial in n.
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A Final Comment on Tiling
• If you look back at the unbounded version, you can see 

that we could have simulated a non-deterministic Turing 
machine there, but it would have had the problem that 
the plane would be tiled if any of the non-deterministic 
choices diverged and that is not what we desired.

• However, we need to use a non-deterministic machine 
for the finite case as we made this so it tiles iff some 
path led to acceptance. If all lead to rejection, we get 
stalled out on all paths as the reject state can go 
nowhere.
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Tiling Example
• Turing Machine mimicking NP rejects (or for unbounded 

accepts) strings that start with at least two 1’s in 
succession. This is designed 

• q0 0 0 q2

• q0 1 R q1

• q1 0 L q2

• q1 1 1 q3

• q2 0 0 q2 // accepting for NP; rejecting for TM
• q2 1 1 q2

• No q3 rules so entering here stops tiling
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Tile Replication
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0
**

0

Y0
*Y

Y0

1
**

1

Y1
*Y

Y1



q0 0 0 q2 q0 1 R q1
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**
q0,0

q2,Y0
*Y

q0,Y0

q2,0
q1,R*

q0,1

Y1
Y

q0,Y1

1

q1,R

q1,R *
0

q1,0

q1,R *
1

q1,1

q0,1 0 ⇒ 1 q1,0; q0,1 1 ⇒ 1 q1,1

q0,Y1 0 ⇒ Y1 q1,0; q0,Y1 1 ⇒ Y1 q1,1 

q0,0 ⇒ q2,0

q0,Y0 ⇒ q2,Y0



q1 0 L q2 q1 1 1 q3
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*
q1,0

0
q2,L*

0

q2,0
q2,Lq2,L*

1

q2,1

q2,LY
Y0

q2,Y0
q2,LY

Y1

q2,Y1

**
q1,1

q3,Y1
*Y

q1,Y1

q3,1

0 q1,0 ⇒ q2,0 0; 1 q1,0 ⇒ q2,1 0 

q1,1 ⇒ q3,1 q1,Y1 ⇒ q3,Y1

Y0 q1,0 ⇒ q2,Y0 0; Y1 q1,0 ⇒ q2,Y1 0 



q2 0 0 q2 q2 1 1 q2
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**
q2,0

q2,Y0
*Y

q2,Y0

q2,0
**

q2,1

q2,Y1
*Y

q2,Y1

q2,1

q2,0 ⇒ q2,0                q2,1 ⇒ q2,1                

q2,Y0 ⇒ q2,Y0                q2,Y1 ⇒ q2,Y1                



Showing Rows of Tiles
• The following presents two starting situations
• Case 1: Tape contains  1 0 …..; ID = q01
• Case 2: Tape contains  1 1 …..; ID = q011
• NTM version should accept case 1; DTM rejects
• NTM should reject case 2; DTM accepts
• Note: We cycle on accept and hang on reject 

with NTM but we do opposite on DTM
• NTM is for an example of NP Complete
• DTM is for an example of Co-RE Complete
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Sample Starting Rows
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q0,Y1
0Y

X

0
00

X

0
00

X………...

q0,Y1
0Y

X

1
00

X

0
00

X

0
00

X
…



Case 1; Two More Rows
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q0,Y1
0Y

X

0
00

X

Y1
q1,RY

q0,Y1

q1,0
*

0

0
**

0
…q1,R

0
**

0

0
00

X
…

0
00

X

q2,Y1
q2,LY

Y1

0
*

0
**

0
…q2,L

0
**

0q1,0



Case 1; Row 3 repeated
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q2,Y1
q2,LY

Y1

0
*

0
**

0
…q2,L

0
**

0q1,0

q2,Y1
*Y

q2,Y1

0
*

0
**

0
…*

0
**

00

q2,Y1
*Y

q2,Y1

0
*

0
**

0
…*

0
**

00



Case 2; Only Two More Rows
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Y1
q1,RY

q0,Y1

q1,1
*

1

0
**

0
…q1,R

0
**

0

Y1
*Y

Y1

q3,1
*

0
**

0
…*

0
**

0q1,1

q0,Y1
0Y

X

1
00

X

0
00

X

0
00

X
…



More on Variations
• One-dimensional space (I asked you to think 

about that on an earlier slide)

• Infinite 3d space (worse than re/co-re in general)
– This become a there exists, for all, problem – Does 

there exist an initial tape for which M never halts
– In fact, one can mimic acceptance of no inputs here, 

meaning M is not an algorithm iff we can not tile any 
one of the x-y planes in the 3d space
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PCP Revisited

Bounded Post Correspondence



264

Word Problems
• Let S = (S, R) be some Thue (Semi-Thue) 

system, then the word problem for S is the 
problem to determine of arbitrary words w and x 
over S, whether or not w Û* x ( w Þ* x )

• The Thue system word problem is the problem 
of determining membership in equivalence 
classes. This is not true for Semi-Thue systems.

• We can always consider just the relation Þ* 
since the symmetric property of Û* comes 
directly from the rules of Thue systems.
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Simulating Turing Machines
• Basically, we need at least one rule for each 4-

tuple in the Turing machine’s description.
• The rules lead from one instantaneous 

description to another.
• The Turing ID aqab is represented by the string 

haqabh, a being the scanned symbol.
• The tuple q a b s leads to 

qa ® sb
• Moving right and left can be harder due to 

blanks. 
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Details of Halt(TM) £ Word(ST)
• Let M = (Q, {0,1}, T), T is Turing table.
• If qabs Î T, add rule qa ® sb // simple rewrite of scan
• If qaRs Î T, add rules 

– q1b ® 1sb a=1, "bÎ{0,1} // left non-blank; scan not blank
– q1h ® 1s0h a=1 // right blank; scan not blank
– cq0b ® c0sb a=0, "b,cÎ{0,1} // left and right non-blank; scan blank
– hq0b ® hsb a=0, "bÎ{0,1} // left blank; right not blank; scan blank
– cq0h ® c0s0h a=0, "cÎ{0,1} // left not blank; right blank; scan blank
– hq0h ® hs0h a=0 // blank tape to blank tape

• If qaLs Î T, add rules 
– bqac ® sbac "a,b,cÎ{0,1} // left and right had non-blanks
– hqac ® hs0ac "a,cÎ{0,1} // left blank; right not blank
– bq1h ® sb1h a=1, "bÎ{0,1} // left not blank; right blank; scan not blank
– hq1h ® hs01h a=1 // left blank; right blank; scan not blank
– bq0h ® sbh a=0, "bÎ{0,1} // left not blank; right blank; scan blank
– hq0h ® hs0h a=0 // blank tape to blank tape

4/11/23 © UCF CS



267

Clean-Up
• Assume q1 is start state and only one accepting state exists q0
• We will start in h1xq10h, seeking to accept x (enter q0) or reject (run 

forever).
• Add rules 

– q0a ® q0 "aÎ{0,1}
– bq0 ® q0 "bÎ{0,1}
– hq0h ® hq0h

• The added rule allows us to “erase” the tape if we accept x.
• This means that acceptance can be changed to generating hq0h.
• The last rule says derivations of hq0h can be even or odd.

• The next slide shows the consequences.
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Semi-Thue Word Problem

• Construction from TM, M, gets:
• h1xq10h Þå(M)* hq0h iff xÎL(M).
• hq0h ÞÕ(M)* h1xq10h iff xÎL(M).
• hq0h Ûå/Õ(M)* h1xq10h iff xÎL(M).
• Can recast both Semi-Thue and Thue

Systems to ones over alphabet {a,b} or 
{0,1}. That is, a binary alphabet is 
sufficient for undecidability.
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ST to PCP Example

• Start with Semi-Thue System
– aba ® ab; a ® aa; b ® a
– Instance of word problem: bbbb Þ*? aa

• Convert to PCP
– [bbbb* ab ab aa aa a a ]

[ aba aba a a b b *aa]
– And * * a a b b

* * a a b b
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How PCP Construction Works?

• Using underscored letters avoids solutions that 
don’t relate to word problem instance. E.g.,

ab aa
aba a

leads to solution no matter the question 
• Top row insures start with [W0*
• Bottom row insures end with *Wf]
• Bottom row matches Wi, while top matches Wi+1

(one is underscored)
• Get Solution for PCP iff W0 Þ* Wf

4/11/23 © UCF CS



271

ST to PCP Example
• Start with Semi-Thue System

– aba ® ab; a ® aa; b ® a
– Instance of word problem: bbbb Þ*? aa

• Convert to PCP
– [bbbb* ab ab aa aa a a ]

[ aba aba a a b b *aa]
– And * * a a b b

* * a a b b
• Show correspondence (note: two steps in one at start)

[bbbb* a b a b * ab   a *   ab  * aa          ]
[           b b b b *  aba b * aba *   ab *aa]
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Bounded Variation
• Limit correspondence to a length that is 

polynomial in n, where n is length of initial input 
string.

• Outline of proof we can get for almost free
– Convert halting problem for a Non-deterministic Turing machine 

to word problem for a Semi-Thue System
Note: we originally did for deterministic machines, but the construction 
works for non-determinism and maps nicely to Semi-Thue systems 
which are non-deterministic by definition.

– Recast as an instance of PCP
– Limit the length of word to (n+2)k, where original TM accepts or 

rejects in nk steps.
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Another Approach 
• There is a tighter bound on Bounded PCP.

• Given sequences (x1, x2, …, xn) and (y1, y2, …, yn), 
and a positive integer 
K ≤ p(max(|x1|+…+|xn|, |y1|+…+|yn|), 
where p is some polynomial, is there a solution to this 
instance involving indices i1, …,ik, k≤K (not necessarily 
distinct), of integers between 1 and n, such that the 
corresponding x and y strings are identical.

• Follows from Constable, Hunt and Sahni (1974). “On the 
Computational Complexity of Program Scheme 
Equivalence,” Siam Journal of Computing 9(2), 396-416.

4/11/23 © UCF CS 273



MaxCut

NPC Problem where 
MinCut variation is in P



Max(Min)Cut
• For a graph, a maximum (minimum) 

cut is a cut whose size is at least the size 
(at most the size) of any other cut. That is, 
it is a partition of the graph’s vertices into 
two complementary sets S and T, such that 
the number of edges between S and T is 
as large (as small) as possible. Finding 
such a cut is known as the MaxCut
(MinCut) problem.
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Weighted Cuts
• The weighted MaxCut (MinCut), starts with a 

graph with weighted edges and the objective is 
to maximize (minimize) the total weight of the 
edges between S and its complement rather than 
the number of the edges. 

• These are clearly not decision problems as we 
are interested in optimization, so where do they 
and decision problem versions lie in the 
Complexity Hierarchy?
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Unweighted and Weighted Cuts
• MaxCut (MinCut) focuses on dividing network into two 

parts where we cut edges joining members of each part. 
Goal is maximum (minimum) edge cuts

• MinCut and its weighted variant are discussed in 
COT5405 and are in the Class P

• MaxCut (weighted and unweighted), however, is not 
known to be in P



Unweighted MaxCut Example
A

B C

D E

A

C

E

D

B



Partition Reviewed
• Recall that Partition is a decision problem.
• Given multiset X= {x1, x2, … xn}, where each xi is a 

positive integer, can we partition this into two sets Y and 
Z = X – Y, such that the sums of the elements of each 
partition are the same.

• We showed, Partition is in NP 
• Given a candidate partition, we can check to see if it’s 

legitimate in deterministic polynomial time.
• We then showed SS ≤P Partition, where SS is 
SubsetSum, known to be in NPC (3SAT ≤P SS).
• We actually showed SS ≡P Partition, but that was overkill



Weighted MaxCut as a DP
• Given a weighted graph G = (V, E) and a 

proposed weight W, is the Weighted MaxCut of 
G at least W.

• We will show that this decision problem is in 
NPC and that its related Optimization problem, 
“what is the value of Weighted MaxCut?” is NP-
Hard.

• Note that NP-Hard problems do not need to be 
decision problems, although they can be. This 
optimization one is not.



The Construction
• Let X= {x1, x2, … xn} be some multiset where each xi is a 

positive integer
• Defined GX be the graph (V = {vi | i ∈ {1.,,.,n}, E) where 

E = V ✕ V – {u,u, u ∈ E} . That is, (u,v) ∈ E for all u and v 
in V except for self loops. The graph is fully connected.

• Assign the label xi to the vertex vi and the weight xi * xj to 
the edge (vi,vj). 

Note: No edge exists when i = j.

• Claim:
• There is a partition of X iff the MaxCut of Gx is at least 

¼∑,-./ 𝑥𝑖2



Weighted MaxCut Example

{1, 2, 3, 4}

{1, 4}
{2, 3}

1 2

34

2

12

3

8

Sum = 10
Want ≥ ¼ sum2 = 25
2 + 3 + 8 + 12 = 25



Weighted MaxCut Example

{1, 2, 3, 4}

Bad Choice
{4}
{1, 2, 3}

1

2

34

4

12

8

Sum = 10
Want ≥ ¼ sum2 = 25
4 + 8 + 12 = 24 < 25
(sum-1)(sum+1) = 99 < 100



The Reasoning Part 1
• Assume we partition GX into the vertices S and T=V-S and consider, 

wlog, all the S vertices to be on the left of the graph and the T vertices 
on the right, with the edges in between. Here, the cut has a weight of 
∑!!∈#,!"∈% 𝑥𝑖𝑥𝑗= ∑>!∈@ 𝑥𝑖 ✕ ∑>"∈A 𝑥𝑗

• Consider the case where X can be partitioned into S and T, where 
∑!!∈# 𝑥𝑖 = ∑!!∈% 𝑥𝑖. If this can be done, the answer to the Partition 
question for X is “YES”.

• If we cut all edges, the vertices on each side will have associated 
values that sum to ½ ∑&'() 𝑥𝑖 and the edges will have the product of this 
with itself (because of equality) or W = ¼∑&'() 𝑥𝑖2 . 

• Clearly then, if X can be partitioned, we can achieve a MaxCut weight 
of exactly W which is ≥ W and so the answer to the Weighted MaxCut
question for GX is “YES”, matching the Partition answer for X.



The Reasoning Part 2
• We now need to show  that any other partitioning that does not 

have the same sum of values in S as in T results in a cut whose 
weight < W. If this is the best we can do, then the answer to the 
Partition question for X is “NO”

• Clearly, if we don’t have equality, then one side of the graph is 
heavier than the other. Let e > 0 be some integer such that one 
side has labels summing to ½ ∑#$%& 𝑥𝑖+ e and the other side has 
labels summing to ½ ∑#$%& 𝑥𝑖 - e. 

• This must be so as the sum of all weights is ∑#$%& 𝑥𝑖 and the 
graph is fully connected. 

• The weight of the cut is then (½ ∑#$%& 𝑥𝑖 + e) ✕ (½ ∑#$%& 𝑥𝑖 - e). 
• A little algebra shows this is ¼∑#$%& 𝑥𝑖2 - e2 < ¼∑#$%& 𝑥𝑖2 = W and 

so the answer to the Weighted MaxCut question for GX is “NO”, 
matching the Partition answer for X.



The Reasoning Part 3
Theorem:
Weighted MaxCut is in NPC
Proof:
We previously showed 

Weighted MaxCut is in NP
The last few slides show that 

Partition ≤P Weighted MaxCut
Combining these, Weighted Partition is in NPC as Partition 
was previously shown to be in NPC.



The Reasoning Part 4
Theorem:
Weighted MaxCut Optimization is NP-Hard
Proof:
Let G = (V, E) be some weighted graph. Let W be some 
weight that we wish to equal or exceed with a cut of G. 
Assume that we have an Oracle for the Weighted MaxCut
Optimization Problem that will report the maximum weight, M. 
G has a cut ≥ W iff M ≥ W. The work to set up the question 
and use the answer of the Oracle is constant (so polynomial) 
time. This means that 
Weighted MaxCut ≤P Weighted MaxCut Optimization.
Thus, Weighted MaxCut Optimization is NP-Hard. 
Is it NP-Easy?



Unweighted MaxCut
• This just says that we have a graph with no 

weights on its edges, so we want to cut as many 
edges as possible and answer the question as to 
whether that number is greater than or equal to 
some goal K. 

• This problem is also in NPC. Its proof follows from 
Max 2-SAT. This is determining an assignment 
that maximizes the number of clauses set to true. 
We will discuss various 2-SAT problems soon. 



Co-NP

Fourth Significant Class of 
Problems



Co–NP
For any decision problem A in NP, there is 
a ‘complement’ problem Co–A defined on 
the same instances as A, but with a 
question whose answer is the negation of 
the answer in A. That is, an instance is a 
"yes" instance for A if and only if it is a "no" 
instance in Co–A. 

Notice that the complement of the 
complement of a problem is the original 
problem.
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GC and Co–GC
Co–NP is the set of all decision problems whose 
complements are members of NP.

Graph Color GC
Given: A graph G and an integer k.
Question: Can G be properly colored with k colors?

Co–GC
Given: A graph G and an integer k.
Question: Do all proper colorings of G
require more than k colors?
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Co–GC
Notice that Co–GC is a problem that does not 
appear to be in the set NP. That is, we know of 
no way to check in polynomial time the answer to 
a "Yes" instance of Co–GC.

What is the "answer" to  a Yes instance that can 
be verified in polynomial time?
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P and Co-P
Not all problems in NP behave this way. For example, if 
X is a problem in class P, then both "yes" and "no" 
instances can be solved in polynomial time. 

That is, both "yes" and "no" instances can be verified in 
polynomial time and hence, X and Co–X are both in NP, 
in fact, both are in P. 

This implies P = Co–P and, further,
P = Co–P Í NP Ç Co–NP.
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Co–NP
This gives rise to a second fundamental 
question: 

NP = Co-NP?

If P = NP, then NP = Co-NP. 
This is not "if and only if."

It is possible that NP = Co-NP 
and, yet,  P ≠ NP.
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Co–NP Complete
If  A ≤P B and both are in NP, then the same polynomial 
transformation will reduce Co-A to Co–B. That is, 
Co–A ≤P Co–B. Therefore, Co–SAT is 'complete' in 
Co–NP. 

In fact, corresponding to NP–Complete is the 
complement set Co–NP–Complete, the set of hardest 
problems in Co–NP.
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Turing Reductions
Now, return to Turing Reductions.

Recall that Turing reductions include 
polynomial transformations as a special case. 
So, we should expect they will be more powerful.

4/11/23 © UCF CS 296



Turing Reductions
(1)  Problems A and B can, but need not, be

decision problems. 

(2) No restriction placed upon the number 
of instances of B that are constructed.

(3) Nor, how the result, AnswerA, is computed.

In effect, we use an Oracle for B.
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NP–Hard

Fifth Significant Class of 
Problems



NP–Hard
To date, we have concerned ourselves with 
decision problems. We are now ready to include 
additional problems, in particular, optimization
problems. 

We require one additional tool – the second type 
of transformation discussed earlier – Turing 
reductions.
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NP–Hard
Definition: Problem B is NP–Hard if there is a 
polynomial time Turing reduction A ≤PT B for 
some problem A in NP–Complete.
This implies NP–Hard problems are at least as 
hard as NP–Complete problems. Therefore, they 
cannot be solved in polynomial time unless P = NP 
(and maybe not then). 
This use of an oracle, allows us to reduce co-NP-
Complete problems to NP-Complete ones and 
vice versa.
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QSAT
• QSAT is the problem to determine if an arbitrary 

fully quantified Boolean expression is true. Note: 
SAT only uses existential.

• QSAT is NP-Hard but may not be in NP.
• QSAT can be solved in polynomial space 

(PSPACE).
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NP–Hard
Polynomial transformations are Turing 
reductions.

Thus, NP–Complete is a subset of NP–Hard. 
Co–NP–Complete also is a subset of NP–Hard. 
NP–Hard contains many other interesting 
problems.
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NP-Easy
• NP-Easy is the set of function problems that are 

solvable in polynomial time by a deterministic 
Turing machine with an oracle for some decision 
problem in NP.

• That is, given an Oracle for some NP problem Y, 
if X is Turing reducible to Y in polynomial time, 
then X is NP-Easy.
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NP–Easy
NP-Easy problem X need not be, but often is, 
NP-Complete. 

In fact, X can be any problem in NP or Co–NP.

More to the point, an NP-Easy problem does not 
even need to be a decision problem – it can be an 
optimization problem or some other problem 
seeking a numerical rather than binary (yes/no 
answer).
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NP–Equivalent
Problem B in NP–Hard is NP–Equivalent when B reduces to some 
problem X in NP, That is, B ≤PT X. This is, when B is also NP-Easy.

Since B is in NP–Hard, we already know there is a problem A in NP–
Complete that reduces to B. That is, A ≤PT B. 

Since X is in NP, X ≤PT A. Therefore, X ≤PT A ≤PT B ≤PT X.

Thus, X, A, and B are all polynomially equivalent, and we can say

Theorem. Problems in NP–Equivalent are polynomial if and only if 
P = NP.

Example: Optimization version of Subset-Sum is NP-Equivalent. 
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NP-Easy and Equivalent
• NP-Easy -- these are problems that are 

polynomial when using an NP oracle (≤pt)
• NP-Equivalent is the class of NP-Easy and NP-

Hard problems (assuming Turing rather than 
many-one reductions)
– In essence this is the functional equivalent of 

NP-Complete but also of 
Co-NP-Complete since we can negate 
answers
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Turing vs m-1 Reductions
• In effect, our normal polynomial reduction 

(≤p) is a many-one polynomial time 
reduction as it just asks and then accepts 
its oracle’s answer

• In contrast, NP-Easy and NP-Equivalent 
employ a Turing machine polynomial time 
reduction (≤pt) that uses rather than 
mimics answers from its oracle
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SubsetSum Optimization

NP-Equivalence
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SubsetSum Optimization 
(SSO)

S = {s1, s2, …, sn} 
set of positive integers

and an integer B.
Optimization: Find a subset of S whose 

values sum to the largest
attainable value ≤B?

Strategy: Use Oracle for SubsetSum
Decision Problem but only use
it a polynomial number of times –
Great care must be taken here as
B takes only log2 B bits to represent
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SSO is NP-Hard
• We can show SS ≤PT SSO
• Let [(s1, s2, …, sn), B] be an instance of 

SubsetSum (we’ll call it SS)
• We can ask the oracle for SSO for the 

largest value G ≤ B such that some 
subsequence of (s1, s2, …, sn) equals G. 
If its answer is B we say “YES”; else we 
say “NO”
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SSO is NP-Easy
• We can show SSO ≤PT SubsetSum
• Let S = [(s1, s2, …, sn), B] be an instance of SSO
• Again, our goal is to find the largest value G ≤ B such 

that some subsequence of (s1, s2, …, sn) equals G
• The challenge is to do this in a number of steps that is 

polynomial in the size of the question. As any integer k
can be represented in log2k bits, we need to make sure 
we don’t ask more than log2S questions of our oracle, 
where S is the length of the representation of 
[(s1, s2, …, sn), B].

• Read the next slide very carefully
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A Subtle Failure
• Let [(s1, s2, …, sn), B] be an instance of SSO. Below sequence A

is (s1, s2, …, sn)
SUBSET-SUM-OPTIMIZATION(sequence A,  int B) {

for i=B downto 1
if ( SubsetSum(A, i) ) then return i;

return 0;
}

• This calls the oracle SS up to B times
• As B is 2log2(B), we might ask an exponential number of questions 

relative to the representation of our input parameter B
• As B can be as large as the sum of the sequence (s1, s2, …, sn), 

the value B can be exponential in the size of the representation of 
our input and so our reduction is not polynomially bounded.
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Using SubsetSum Oracle
SUBSET-SUM-OPTIMIZATION(sequence A, int B) {

int best = B;
for i = floor(log2B) downto 0 do 

A = A + { 2i }; // add to multiset;succeeds now
for i = floor(log2B) downto 0 do {

A = A - { 2i }; // remove from multiset
if !SUBSET-SUM(A, best) then // 2i was essential

best = best - 2i;  // reduce best
}
return best;

}
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Example of SubsetSum Opt
• Initial Values: 
• A = {1, 4, 5, 7}, best = B = 15
• A = {1, 4, 5, 7, 8, 4, 2, 1}, best = 15
• A = {1, 4, 5, 7, 4, 2, 1}, best = 15
• A = {1, 4, 5, 7, 2, 1}, best = 15
• A = {1, 4, 5, 7, 1}, best = 15-2 = 13
• A = {1, 4, 5, 7}, best = 13
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Another Example
• Initial Values: 
• A = {1, 4, 5, 7}, best = B = 20
• A = {1, 4, 5, 7, 16, 8, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 8, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 4, 2, 1}, best = 20
• A = {1, 4, 5, 7, 2, 1}, best = 20
• A = {1, 4, 5, 7, 1}, best = 20-2 = 18 
• A = {1, 4, 5, 7}, best = 18-1 = 17
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Another Example
• Initial Values: 
• A = {1, 4, 5, 7}, best = B = 31
• A = {1, 4, 5, 7, 16, 8, 4, 2, 1}, best = 31
• A = {1, 4, 5, 7, 8, 4, 2, 1}, best = 31
• A = {1, 4, 5, 7, 4, 2, 1}, best = 23
• A = {1, 4, 5, 7, 2, 1}, best = 19
• A = {1, 4, 5, 7, 1}, best = 17
• A = {1, 4, 5, 7}, best = 17
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Analysis
• Each of the two loops has O(log2B) 

iterations, which is linear with respect to 
the size of B’s representation. 

• Note that if we tried all values less that B, 
we would have O(B) tries and that is 
exponential in log2B, the size of B.

• The correct solution takes advantage of 
the NP-complete power of the oracle.
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Minimum Colors for a Graph
• We know K-Color (KC) is NP Complete
• We can reduce KC to MinColor problem just by seeing if 

MinColor is ≤ K. Thus, MinColor is NP-Hard
• How do we reduce MinColor to KC asking only a log

number of questions of the oracle for KC?
• Consider, if N nodes, then can easily N-Color
• Can we N/2-Color? 

– If so, then try N/4
– If not, then try 3N/4

• This is a simple binary search for optimal value
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2SAT

A Subset of 3SAT
How hard?
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2SAT
• We showed that 3SAT is NP Complete
• What about 2SAT (two variable per 

clause)?
• Remember that 2 variables still result in 

undecidable deducibility from finite axion 
sets, so we might be suspicious that there 
are some challenging issues here.
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Attacking 2SAT
First we need to convert a 2SAT instance to a different 
form, the so-called implicative normal form (INF). Note 
that the expression a∨b is equivalent to
¬a⇒b ∧ ¬b⇒a
(if one of the two variables is false, then the other one 
must be true).
We now construct a directed graph of these 
implications: for each variable x there will be two 
vertices x and ¬x. The edges will correspond to the 
implications.
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Comment about Single 
Variable Terms

If we have a term that involves just one variable, it can be (x∨¬x) 
and this term is true so it can be removed, or (x∨x) so x must be 
true, or (¬x∨¬x) so x must be false.
If either of the last two cases  exist in a 2-CNF then we can 
replace all literals involving x with either true or false in any term 
it exists. If we replace with true, that term can be removed as it’s 
already satisfied. If false, we have another single literal term and 
the process continues. 
This is a simple preprocessing step, so we can assume wlog that 
no such cases exist. That is that all terms involve two distinct 
variables.
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2SAT Example
Let's look at an example in 2-CNF form:

(a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ ¬c)
The oriented graph will contain the following 
vertices and edges:
(a ∨ ¬b) (¬a ∨ b) (¬a ∨ ¬b) (a ∨ ¬c)
¬a⇒¬b a⇒b a⇒¬b ¬a⇒¬c
b⇒a ¬b⇒¬a b⇒¬a c⇒a
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Graph from 2SAT Example
• If there is an edge a⇒b, then there also is an edge ¬b⇒¬a
• A contradiction exists if there is a cycle, for any variable x, that 

involves x and ¬x (means x Û* ¬x, which is a self-contradiction)
• What if there is path from some variable x to ¬x or vice versa?
• x⇒*¬x can only be satisfied if x is false (¬x true)
• ¬x⇒*x can only be satisfied if ¬x is false (x true)
• Neither case is contradictory by itself
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Finding a Solution for 2SAT
• Looking at our graph, c must be false, but so must a and b, as each 

has a path to its complement
• Note that, if a is true, b is true, and if a is false, b is false
• Fortunately, there are no cycles involving a variable and its 

complement, so we have a solution <a = F; b = F; c = F>
• The trick now is to discover that solution in an algorithmic manner
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Strongly Connected 
Components (SCC)

• A directed graph is strongly connected if there is a path between all 
pairs of vertices.

• A strongly connected component (SCC) of a directed graph is a 
maximal strongly connected subgraph. For example, there are 4
SCCs in the graph we have been investigating.
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Computing SCC
• There are several efficient linear time 

algorithms for finding the strongly 
connected components of a graph, based 
on depth first search

• The two common approaches are 
Tarjan’s and Kosaraju’s Algorithms
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} // ** Finishing times always refer to Step 1’s DFS
32
8

Finding-all-SCC(G) {
1. Perform DFS on G ;
2. Construct GT ;
3. while (some node in GT is undiscovered)

{ u = undiscovered node with latest 
finishing time** ;

Perform DFS on GT starting from u ;
} // nodes in the DFS tree from u forms an SCC

Kosaraju’s Finding-all SCC



Mapping 2SAT to SCC
• In terms of the implication graph based on the INF, two literals 

belong to the same strongly connected component whenever 
there exist chains of implications from one literal to the other 
and vice versa. 

• Therefore, the two literals must have the same value in any 
satisfying assignment to the given 2-satisfiability instance. In 
particular, if a variable and its negation both belong to the 
same strongly connected component, the instance cannot be 
satisfied, because it is impossible to assign both these literals 
the same value. 

• This is a necessary and sufficient condition: a 2-CNF formula 
is satisfiable if and only if there is no variable that belongs to 
the same strongly connected component as its negation.
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• (a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ ¬c) 
• Create Implication Graph, G, and run FindingAllSCC(G)
• While some variable is not yet assigned

– Start at a partition that has no outgoing edges
– Assign true to all literals in the partition 
– Remove partition and its incoming edges

• We get
– ¬c = T
– ¬a = ¬b = T
– And so, a = b = c = F

Solving SCC and 2SAT
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Any Hard Problems Here?
• Minimum-ones 2SAT problem: Provide a 

satisfying assignment that sets a minimum 
number of variables to true. 

• Uniform Min-Ones-2SAT is the restriction of 
Min-Ones-2SAT to input instances without 
mixed clauses (must be all positive or all 
negative literals in each clause)

• Positive Min-Ones-2SAT is the restriction of 
Uniform Min-Ones-2SAT to inputs containing 
only positive clauses (no negations)
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Uniform Min-Ones-2SAT
• Uniform Min-Ones-2SAT is NP-Hard as 

we can reduce Min-Vertex-Cover to it
• In fact, Uniform Min-Ones-2SAT is NP-

Equivalent because Min-Ones-2SAT is 
NP-Easy

• The best known (to me) uniform minimum-
ones 2SAT problem algorithm has a 
running time of O(1.21061n) on a 
satisfiable 2SAT formula with n variables
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Uniform Min-Ones-2SAT
• This is interesting as the problem of determining haplotype 

classifications and propensity for certain genetic diseases can be 
mapped onto Uniform Min-Ones-2SAT

• Note that each individual has a haplotype pair associated with a 
stretch of DNA, one inherited from their mother and the other from 
their father

• We can focus on one gene looking for an explanation of a disease
• Assume access to reliable haplotype data. Together with this 

haplotype data for some population of individuals, we assume we 
know, for each individual, whether that person shows symptoms of 
the relevant disease or not.
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The Mapping
• Have each clause correspond to an individual in some group of 

related people (preservation of haplotypes over generations is likely) 
and each Boolean variable correspond to a haplotype 

• In general, each individual with some target disease has at least one 
haplotype that has a responsible variation and each individual 
without the disease has at least one without the variation

• An individual without the disease is represented by negative literals 
in the two haplotypes; one with it is represented by two positive 
literals

• Finding an assignment with as few ones as possible represents an 
explanation for the disease with the smallest possible number of 
defective haplotypes. This matches an expectation that the 
population should contain more normal haplotypes than defective 
ones.
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Positive Min-Ones-2SAT
• Positive Min-Ones-2SAT is also 

equivalent to Min-Vertex-Cover and 
therefore NP-Equivalent as well

• There are mappings of many applications 
onto this variant of 2SAT, e.g., finding 
some minimal set of constraints, where 
constraints are always paired and so just 
one of each pair must be satisfied
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VC to Positive Min-Ones-2SAT 
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Can we cover all edges with just 3 vertices? 
Recast as Positive Min-Ones-2SAT. Each Node is a variable, each 
edge is an or (Ú). Above is
(AÚB)(AÚC),(BÚC),(BÚD),(CÚE),(DÚE),(DÚF)
To answer VC of 3, ask “is minimum positive assignment 3 or fewer?”
B,C,D works and tells us which vertices to choose to 3-cover above
If we added edge between E and F, the min would be 4 and we would 
require 4 vertices to cover all edges and 4 variables set to true
This shows Positive Min-Ones-2SAT is NP-Hard

A

B

E

D

C

F



Positive Min-Ones-2SAT to VC
• Be sure 2SAT instance has a solution (O(n))
• Associate every variable with a vertex
• If (v1Úv2) is a clause, add an edge between v1

and v2 in graph
• Now to find min, start with n/2, where we have n

variables and do a binary search for min using 
oracle for VC

• Max number of queries of VC oracle is just log2n
so this is NP-Easy and therefore NP-Equivalent
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Finding Triangle Strips

Adapted from presentation by 
Ajit Hakke Patil

Spring 2010



Graphics Subsystem
• The graphics subsystem (GS) receives graphics 

commands from the application, builds the 
image specified by the commands, and outputs 
the resulting image to display hardware

• Graphics Libraries:
– OpenGL, WebGL, DirectX.
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Surface Visualization

• As Triangle Mesh
• Generated by triangulating the 

geometry 
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Triangle List vs Triangle Strip

• Triangle List: Arbitrary ordering of triangles.
• Triangle Strip: A triangle strip is a sequential ordering of 

triangles, where consecutive triangles share an edge
• In case of triangle lists we draw each triangle separately.
• So for drawing N triangles we need to call/send 3N vertex 

drawing commands/data.
• However, using a Triangle Strip reduces this requirement 

from 3N to N + 2, provided a single strip is sufficient.
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Triangle Strip vs Triangle List

// Draw Triangle Strip
glBegin(GL_TRIANGLE_STRIP); 
For each Vertex
{

glVertex3f(x,y,z); //vertex
}
glEnd(); 

// Draw Triangle List
glBegin(GL_TRIANGLES);
For each Triangle
{

glVertex3f(x1,y1,z1);// vertex 1 
glVertex3f(x2,y2,z2);// vertex 2
glVertex3f(x3,y3,z3);// vertex 3

}
glEnd();
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Triangle List vs Triangle Strip
• four separate triangles: 

ABC, CBD, CDE, and 
EDF

• But if we know that it is a 
triangle strip or if we 
rearrange the triangles 
such that it becomes a 
triangle strip, then we can 
store it as a sequence of 
vertices ABCDEF

• This sequence would be 
decoded as a set of 
triangles ABC, BCD, 
CDE, and DEF

• Storage requirement: 
– 3N => N + 2
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Tri-strips example
• Single tri-strip that describes triangles is:

1,2,3,4,1,5,6,7,8,9,6,10,1,2
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K-Stripability
• Given some positive integer K (less than 

the number of triangles).
• Can we create K tri-strips for some given 

triangulation – no repeated triangles.
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Problem Definition
• Given a triangulation T = {t1, t2, t3 ,.. tn}. Find the 

triangle strip (sequential ordering) for it?
• Converting this to a decision problem.
• Formal Definition:

Given a triangulation T = {t1, t2, t3 ,.. tN}. Does 
there exists a triangle strip?
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NP Proof
• Provided a witness of a ‘Yes’ instance of the problem. This must 

be a sequence of the original triangles where each triangle has 
a common edge with next one in sequence. We can verify it in 
polynomial time by checking if the sequential triangles are 
connected.

• Cost of checking if the consecutive triangles are connected
– For i = 1 to N -1 

• Check of ith and i+1th triangle are adjacent (have a 
common edge)

• Up to three edge comparisons or six vertex 
comparisons

– ~ 6N
• Hence it is in NP.
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Dual Graph
• The dual graph of a 

triangulation is obtained by 
defining a vertex for each 
triangle and drawing an edge 
between two vertices if their 
corresponding triangles 
share an edge

• This gives the triangulations 
edge-adjacency in terms of 
a graph

• Cost of building a Dual 
Graph

– O(N2)
• e.g G’ is a dual graph of G.
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NP-Completeness
• To prove it’s NP-Complete we reduce a known 

NP-Complete problem to this one;  the 
Hamiltonian Path Problem.

• Hamiltonian Path Problem:
– Given: A Graph G = (V, E). Does G contain a 

path that visits every vertex exactly once?
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NP-Completeness proof by 
restriction

• Accept an Instance of Hamiltonian Path, G = (V, E), we restrict this 
graph to have max degree = 3.The problem is still NP-Complete. In 
fact, the gadget we built on Page 192 has max degree 3

• Construct an Instance of HasTriangleStrip
– G’ = G

• V’ = V
• E’ = E

– Let this be the dual graph G’ = (V’, E’) of the triangulation 
T = {t1, t2, t3 ,.. tN}.

• V’ ~ Vertex vi represents triangle ti, i = 1 to N
• E’ ~ An edge represents that two triangles are edge-adjacent

(share an edge)
• Return HasTriangleStrip(T)
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NP-Completeness
• G will have a Hamiltonian 

Path iff G’ has one (they 
are the same).

• G’ has a Hamiltonian Path 
iff T has a triangle strip of 
length N – 1.

• T will have a triangle strip of 
length N – 1 iff G (G’) has a 
Hamiltonian Path.

• ‘Yes’ instance maps to ‘Yes’ 
instance. ‘No’ maps to ‘No.’
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HP ≤P HasTriangleStrip
• The ‘Yes/No’ instance maps to ‘Yes/No’ 

instance respectively and the 
transformation runs in polynomial time.

• Polynomial Transformation
• Hence finding Triangle Strip in a given 

triangulation is an NP-Complete Problem
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More Complexity Topics
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Weakly NP-Hard/Complete
• Have pseudo polynomial time algorithms –

ones that are polynomial in parameter 
values, rather than size of parameters

• Knapsack is Weakly NP-Hard
• Subset-Sum is Weakly NP-Complete
• A key issue is that problem is no longer in 

NP if use unary representation of 
parameters
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Strongly NP-Hard/Complete
• Do not have pseudo polynomial time 

algorithms – ones that are polynomial in 
parameter values, rather than size of 
parameters

• Bin Packing (scheduling) is Strongly NP-
Hard

• A key issue is that problem remains in NP 
even if use unary representation of 
parameters
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PSPACE
• PSPACE is set of problems solvable deterministically in 

polynomial space with unlimited time 
PSPACE = ∪ SPACE(nk)

• PSPACE = co-PSPACE = NPSPACE (non-deter, 
doesn’t matter)

• PSPACE is a strict superset of CSLs
• PSPACE-Complete Problem is, given a regular 

expression e over Σ, does e denote all strings in Σ*?
• Other PSPACE-Complete problem are QSAT and CSL

membership
• NP Í PSPACE = NPSPACE 
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EXPTIME and EXPSPACE
• EXPTIME is the set of problems solvable 

in 2p(n) on a deterministic TM where p is 
some polynomial.

• NEXPTIME is the set of problems solvable 
in 2p(n) on a non-deterministic TM.

• EXPSPACE is the set of problems 
solvable in 2p(n) space and unbounded 
time
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Elementary Functions
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Alternating TM (ATM)
• ATM adds to NDTM notation the notion where, for each 

state q, q has one of the following properties: (accept, 
reject, Ú, Ù)
– Ú means ATM accepts the string if any final state reached after q

is accepting
– Ù means ATM accepts the string if all final states reached after q

are accepting
• AP = PSPACE where AP is class of problems solvable 

in polynomial time on an ATM
• AL = P where AL is like AP, except we are limited to log 

space.
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QSAT, Petri Net, Presburger
• QSAT is solvable by an ATM in polynomial time 

and polynomial space
• As noted, before, QSAT is PSPACE-Complete
• Petri net reachability is EXPSPACE-hard and 

requires 2-EXPTIME
• Presburger arithmetic is at least in 2-

EXPTIME, at most in  3-EXPTIME, and can be 
solved by an ATM with n alternating quantifiers 
in doubly exponential time
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Why is Space so Different?
• We will show that PSPACE = NPSPACE even 

though we cannot show P = NP. In fact, we 
suspect it is not so. 

• Savitch’s Theorem:
if f ∈ Ω(lg(n)), e.g, f describes the binary 
representation of nodes in a graph of size n, or f
says that we look at our input value of n, then
NSPACE(f(n)) ⊆ DSPACE(f(n)2)

• This says what we want as, if f(n) is a 
polynomial, then so is f(n)2.
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Key Element of Proof
• If L is in NSPACE(f(n)) then a tree showing the decision 

process for membership in L is really a directed graph 
with O(2f(n)) nodes associated with each of the states 
that the TM might be in

• For each x ∊ {0,1}+, x ∊ L iff there is a path from the start 
configuration to the accepting configuration

• Connectivity from start to accept is what leads to 
acceptance

• Use SAT and f(n) = lg(n) as an example to understand 
this – if want determinism then need to recall all prior 
choices on current path to backtrack – non-determinism 
just needs to know choices made on this one path
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Vertex Connectivity
• In Algorithm Design and Analysis, we focus on time, so 

long as space is not unreasonable
• We would typically use DFS to determine if a start node 

s has a path to another node t in a directed graph 
G=(V,E)

• Time is O(N), N=|V|+|E|; Space is O(N lg2N)
• The lg2N is for activation records storing node 

numbers/prior choices for backing up -- there are other 
things in the activation record, but they have constant 
size

• We wish to ignore time and do better on size!!!
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What if Non-Deterministic?
• Consider a non-deterministic DFS algorithm to 

search for the existence of a path from a start 
node s to another node t in a directed graph 
G=(V,E)

• Time is O(N), N=|V|+|E|
• Space is O(lg2N) because we don’t need to 

remember the path or prior choices that led us to 
a given point since there is no backtracking

• Savitch’s Theorem says we can do this 
deterministically in O((lg2N)2) space
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Space Complexity of 
Connectivity

• We wish to show an O((log2N)2)-space deterministic algorithm to 
decide if there is a path between two vertices in a directed graph
with N vertices (that’s a generalization of problem)

• Key insight is to show we can use a binary search to look for paths of 
length up to k, initially setting k=N

• Given k, start node s, and end node t, we check if there is a path from 
s to t recursively using a midpoint u that is at most ceiling (k/2) away 
from each (binary search)

• This takes O(log2N) vs N depth of recursive calls (not running time) 
• Each recursive call uses O(lg2N) space for stack (activation record: 

locals + parameters + return address + return value which must 
include identify information about node associated with call)

• Total space is then lg2N * lg2N = (lg2N)2
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Pseudo Savitch Code
Bool k_edge_path (node s, node t, int k) {

if k == 0 return s == t 
if k == 1 return s == t || (s, t) in edges
for u in nodes // this introduces O(N) time

if k_edge_path(s, u, floor(k / 2)) 
&& k_edge_path(u, t, ceil(k / 2)) 

return true
return false

}
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Analyzing Savitch Code
Bool k_edge_path (node s, node t, int k) 
// Requires s, t, and k be remembered
// Because we have the following, all paths can be viewed as 
// length k (N) at start.

if k == 0 return s == t 
if k == 1 return s == t || (s, t) in edges

// Order N for checking all possible intermediaries
for u in nodes // this introduces O(N) time

// Divide and conquer (lg depth)
if k_edge_path(s, u, floor(k / 2)) 

&& k_edge_path(u, t, ceil(k / 2))  return true
return false
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Getting Back to NPSPACE
• A non-deterministic algorithm using f(n) space on 

any given path has a tree of all paths that has up to 
2f(n) nodes. Note that n could be the length of input 
representing the lg of a binary decision tree’s 
number of vertices.

• Based on prior discussion, we can deterministically 
decide if a starting configuration leads to 
acceptance in (lg2(2f(n)))2-space = f(n)2-space

• If f(n) is a polynomial so is f(n)2
• Thus, PSPACE = NPSPACE
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CSLs and PSPACE
• The derivation problem for context-sensitive 

grammars is in PSPACE(n) (LBA) (due to 
Kuroda)

• Using Savitch’s results we have that PSPACE is 
closed under nondeterminism but linear space 
may not be

• This shows that non-deterministic context-
sensitive grammars are also in PSPACE

• In fact, CSL membership is PSPACE-complete
even though CSL = PSPACE(n)
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CSL Derivation is PSPACE-C
• PSPACE = AP (Poly time on ATM)
• QSAT, the quantified satisfiability problem, 

QSAT is PSPACE-complete
• SAT can be solved by an LBA with O(n)

space = PSPACE(n)
• Again, CSL membership is 

PSPACE-complete even though 
CSL = NPSPACE(n)
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https://en.wikipedia.org/wiki/PSPACE


Complexity Hierarchy
• P Í NP Í PSPACE = NPSPACE ⊆ EXPTIME Í NEXPTIME Í EXPSPACE 

⊈ 2-EXPTIME ⊈ 3-EXPTIME ⊈ … ⊈ ELEMENTARY ⊈ PRF ⊈ REC
• What if P ¹ EXPTIME; At least one of these is true

– P ⊈ NP
– NP ⊈ PSPACE
– PSPACE ⊈ EXPTIME

• If NP ¹ NEXPTIME; At least of these is true
– NP ⊈ PSPACE
– PSPACE ⊈ EXPTIME
– EXPTIME ⊈ NEXPTIME 

• Note that EXPTIME = NEXPTIME iff P=NP
• Note that k-EXPTIME ⊈ (k+1)-EXPTIME, k>0

• What If PSPACE ¹ EXPSPACE; At least one of these is true
– PSPACE ⊈ EXPTIME
– EXPTIME ⊈ EXPSPACE
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FP and FNP
• FP is functional equivalent to P

R(x,y) in FP if can provide value y for 
input x via a deterministic polynomial time 
algorithm

• FNP is functional equivalent to NP; 
R(x,y) in FNP if can verify any pair (x,y)
via a deterministic polynomial time 
algorithm
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TFNP
• TFNP is the subset of FNP where a solution 

always exists, i.e., there is a y for each x such 
that R(x,y).
– Task of a TFNP algorithm is to find a y, 

given x, such that R(x,y)
– Unlike FNP, the search for a y is always 

successful
• FNP properly contains TFNP contains FP (we 

don't know if proper)
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Prime Factoring
• Prime factoring is defined as, given n

and k, does n have a prime factor < k?
• Factoring is in NP and co-NP

• Given candidate factor can check its primality
in poly time and then see if it divides n

• Given candidate set of factors can check their 
primalities, and see if product equals n; if so, 
and no candidate < k, then answer is no
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Prime Factoring and TFNP
• Prime Factoring as a functional problem is in 

TFNP, but is it in FP?
• If TFNP in FP, then TFNP = FP since FP is

contained in TFNP
• If that is so, then carrying out Prime Factoring 

is in FP and its decision problem is in P
– If this is so, we must fear for encryption 

techniques, most of which depend on difficulty 
of finding factors of a large number
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More TFNP
• There is no known recursive enumeration of 

TFNP but there is of FNP
– This is similar to total versus partially 

recursive functions (analogies are 
everywhere)

• It appears that TFNP does not have any 
complete problems!!!
– But there are subclasses of TFNP that do 

have complete problems!!
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Another Possible Analogy
• Is P = (NP ∩ Co-NP)? 
• Recall that REC = (RE ∩ co-RE)
• The analogous result may not hold here 
• Prime Factoring is in NP ∩ Co-NP!! 
• We are at risk if P = (NP ∩ Co-NP) as 

then Prime Factoring is in P
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Constraint Satisfaction
• Many decision problems are instances of 

constraint satisfaction
– Example: K-Color must obey constraint that adjacent 

nodes have different colors
– Example: SAT says assignment makes every clause true
– Uniform Min-Ones-2SAT is a constraint problem with 

paired constraints

• In fact, there is a class of programming 
languages that employ constraint-based 
reasoning, e.g., CLP(R)
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Promise Problems
• There is an analogy here to semi-dec.
• You have a predicate that never lies on its 

promise set. 
• It is promised that some of its input should 

get answer yes (Lyes) and others no (Lno), but 
there are maybes. On a maybe, it can give 
any answer or not even halt. 

• Note: Lyes ∩ Lno= ∅
Lyes ∪ Lno is the promise and may not = L
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Promise in Computability
• I wish to check if a program produces the output zero when given 

zero as input.
• The  promise set is the set of programs that converge in 100 steps 

or fewer for all input. 
• Some programs should get answer yes (Lyes) and others no (Lno). 

Our analyzer knows if the program halts in 100 steps and, if so, 
knows if the program produces 0 (is in Lyes) or not (is in Lno). 
However, if it’s not in the promise set, we could just keep checking 
for an answer and potentially never halt or just throw out a random 
answer.

• This is not dissimilar to what VALUE does if ~STP.
• The problem is trivial if a program is in the promise set but 

membership in that set is unsolvable (co-re-complete).
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Promise in Complexity
• I wish to check if if a graph is 4-colorable
• The  promise set is the set of set of planar graphs.
• Checking to see if a graph is planar is easy (O(N))
• If a graph is planar (in the promise set), the answer is yes so 
Lyes = promise set. Demonstrating this coloring is not easy 
but we are assured it exists

• What if we get a graph that is not planar, then the problem is 
NP-Complete to determine if it’s 4-colorable
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Are Approximations Hard?
• PCP (Probabilistically Checkable Proofs)

– Applies to NP-Hard constraint satisfaction problems 
(CSP)

– This states that to determine if an approximation to 
any CSP gets things right most of the time is NP-Hard

• There are multiple formulations of this but here is one:
– Satisfying any fixed percentage of constraints is itself 

NP-Hard
• Example: Satisfying 99% of the pairs in a k-

coloring
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Unique Label Color
• I have an undirected graph and I want to color it while 

obeying a set of pairwise constraints.
• For example, maybe nodes 1 and 2 are connected and 

the pairwise constraints say, if 1 is colored red then 2 
must also be red, but if 1 is colored blue, 2 is green, and 
if 1 is colored green, 2 must be blue.

• Clearly, once I choose a color for either node 1 or 2, I 
know the color for the other.

• In fact, if I have a connected component of the graph, 
coloring one node determines the colors of all others and 
so we can just cycle through assignments for any one 
node to see if the constraints can be satisfied.
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Examples from Wikipedia
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100% satisfiable

75% satisfiable 
check all cases



The Easy and the “Hard”
• For satisfiable (100% can be assigned) 

graphs/color pair constraints, it is easy to 
determine. 

• However, it seems hard to compute the 
best percentage satisfied for a set of 
unsatisfiable graphs/color pair constraints

• This seems so even if all we want is a 
good approximation.
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What is the 3-Color Problem?
• This just extends the constraints with two 

options for the neighbors. 
• Everyone has the two-choice constraints

Red – Blue
Red – Green
Blue – Green 

• That simple extension makes coloring an 
NP-Complete problem
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Khot’s Conjecture
• It starts with a Graph, G, and some set of colors, often 

many more than needed to properly color G, and some 
added pairwise constraints, e.g., if we color a node red, 
all adjacent nodes must be green.

• Assuming we have some finite large set of these 
pairwise constraints, and we know that there exists some 
coloring of G that satisfies 99% of them, then finding a 
coloring that satisfies just 1% is hard (NP-Hard)

• In fact, if x is a large percentage, even 99.999%, then 
this applies to finding a coloring that satisfies just 
0.001% of the constraints (lots of constraint options 
here)
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Is Khot’s Conjecture True?
• FALSE: If the constraints can be mostly satisfied, all known 

cases have easy solutions to check satisfaction of some small 
number of constraints. Also, a large subset of these problems 
were shown not to require exponential time.

• TRUE: Recent results show that, if our constraints give us two 
color choices for neighbors, not just one, then the problem is 
NP-Hard. This can be extended to show that if there is a 
solution for almost half the constraints, then the problem is 
NP-Hard to satisfy a small percentage of the constraints. 
That’s nice but does it apply when we start by having almost 
all constraints satisfiable by some coloring?? It does, 
however, provide tantalizing evidence in support of Khot’s
Conjecture.
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Why Do We Care
• It is in the intersection of Khot’s Conjecture and 

the question as to whether P ≠ NP where things 
get really interesting.

• Specifically, if Khot’s conjecture is true 
and P ≠ NP, then NP-Hard problems not only 
require exponential time but also it will be the 
case that getting good, generally applicable, 
polynomial-time approximations is out of our 
reach.
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