4 1. Let set A be a non-empty Regular Language, and let B be a non-Regular Context-Free Language. For each of (REG) Regular, and (CFL) non-Regular Context-Free, specify if the language C can or cannot be of the given language type and prove your assertions. As always, assume A, B and C are over some finite alphabet, Σ.

$C = B/A = \{ x \mid w = xy, \text{ where } w \in B \text{ and } y \in A \}$

Note: $/$ is called Quotient and was extensively discussed in Class.

You may use any well-known Regular and Context-Free Languages. E.g., every language described by a Regular Expression is Regular and the set $\{ a^n b^n \mid n>0 \}$ is a CFL.

REG: (Big Hint: C can be Regular so show A and B where B/A is Regular. Explicitly describe languages A, B and C and you are done).

$B = \{ a^n b^n \mid n>0 \} \quad A = \{c\} \quad C = \emptyset$, which is clearly regular

CFL: (Big Hint: C can be a CFL, so show A and B where B/A is a CFL. Explicitly describe languages A, B and C and you are done).

$B = \{ a^n b^n \mid n>0 \} \quad A = \{\lambda\} \quad C = \{ a^n b^n \mid n>0 \}$, which is clearly a non-regular CFL

6 2. Let set A be a non-empty recursive set, and let B be an RE non-recursive set. For each of (REC) non-empty recursive, (RE) RE non-recursive, and (NRE) non-re, specify if the set C can or cannot be of the given set type and prove your assertions. Sets are subsets of the Natural Numbers.

$C = B // A = \{ x \mid x = y // z, \text{ where } y \in B, \ z \in A \text{ and } y // z \text{ is floor}(y/z) \text{ if } z>0; \text{ else } y // 0 = 0 \}$

Note: $//$ is called limited division and was shown primitive recursive in Class Notes.

You may assume that A has the characteristic function χ_A and also that it is the range of some total recursive function (algorithm) f_A, and B is the range of some total recursive function f_B.

REC: (Big Hint: C can be REC so show non-empty REC set A and RE non-recursive set B such that $B // A$ is REC. Explicitly describe sets A, B and C and you are done).

$B = K = \{ f \mid f(f) \downarrow \} \quad A = \{0\} \quad C = \{0\}$, which is clearly REC

RE: (Big Hint: C can be RE so show non-empty REC set A and RE non-recursive set B such that $B // A$ is RE. Explicitly describe sets A, B and C and you are done).

$B = K = \{ f \mid f(f) \downarrow \} \quad A = \{1\} \quad C = K$, which is clearly RE non-recursive

NRE: (Big Hint: C must be RE. Prove this by showing a total recursive function whose range is C).

$f_C(x,y) = f_B(x) // f_A(y) \quad \text{This enumerates all and only the members of } B // A$
Let S be some RE set. Prove that S is infinite recursive (decidable) if and only if S is the range of some monotonically increasing total recursive function (algorithm). Hints: To show S is infinite recursive, you must use its monotonically increasing enumerating function to show it is infinite and to provide its characteristic function χ_S. To show S is the range of some monotonically increasing function you must explicitly present that function, f_S, and argue it is monotonically increasing and its range is S. Be sure to justify that the functions you create achieve the desired goals.

Assume S is the range of f_S, which is monotonically increasing. Then S can be decided by

$$\chi_S(x) = \exists y \leq x \ [f_S(y) = x]$$

As f_S is mon. increasing, it will enumerate x on or before the x-th element listed, or it will never enumerate x if it is not in S. This ensures χ_S is a proper characteristic function for S.

Assume S is infinite recursive. Then S has a characteristic function χ_S. We can then enumerate S by

$$f_S(0) = \mu y \ [\chi_S(y)]$$
First item in S

$$f_S(x+1) = \mu y > f_S(x) \ [\chi_S(y)]$$
Next item from an infinite set

Specify True (T) or False (F) for each statement.

<table>
<thead>
<tr>
<th>Statement</th>
<th>T or F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membership in Phrase-Structured Languages is semi-decidable</td>
<td>T</td>
</tr>
<tr>
<td>Membership in Context-Sensitive Languages is unsolvable</td>
<td>F</td>
</tr>
<tr>
<td>Membership in Context-Free Languages can be solved in polynomial time</td>
<td>T</td>
</tr>
<tr>
<td>Membership in Regular Languages can be solved in linear time</td>
<td>T</td>
</tr>
<tr>
<td>The set of programs representing all and only algorithms is a Phrase-Structured Language</td>
<td>F</td>
</tr>
<tr>
<td>Every recursive set is recognized by some primitive recursive function</td>
<td>F</td>
</tr>
<tr>
<td>Every re set is enumerated by some primitive recursive function</td>
<td>T</td>
</tr>
<tr>
<td>PCP over a one-letter alphabet is decidable</td>
<td>T</td>
</tr>
<tr>
<td>An algorithm exists to determine if a Context-Sensitive Language is finite</td>
<td>F</td>
</tr>
<tr>
<td>Every problem solvable in linear space is of linear time complexity</td>
<td>F</td>
</tr>
<tr>
<td>A proposed solution to an instance of Vertex Cover can be checked in linear time</td>
<td>T</td>
</tr>
<tr>
<td>Petri Net Reachability is at least a doubly exponential Problem</td>
<td>T</td>
</tr>
<tr>
<td>Every NP-Hard decision problem is NP-Complete</td>
<td>F</td>
</tr>
<tr>
<td>Every NP-Complete decision problem is NP-Equivalent</td>
<td>T</td>
</tr>
</tbody>
</table>
Let \(P = \langle x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \rangle, x_i, y_1 \in \Sigma^+, 1 \leq i \leq n \), be an arbitrary instance of PCP. We can use PCP’s undecidability to show the undecidability of the problem to determine if a Context Sensitive Grammar generates a non-empty language. I will start the grammar, \(G \). You must complete it so it maps an instance of PCP to the non-emptiness problem for this \(L(G) \).

Define \(G = (\{S, T\} \cup \Sigma, \{\ast\}, S, R) \), where \(R \) is the set of rules:

\[
S \rightarrow x_i \ S \ y_i^R \ | \ x_i \ T \ y_i^R \quad 1 \leq i \leq n \quad \text{(Note: the superscripted R means Reversed)}
\]

// Write the rules for the rest of this CSG.

\[
\begin{align*}
 a \ T \ a & \rightarrow * \ T * \quad \forall a \in \Sigma \\
 * \ a & \rightarrow a \ * \quad \forall a \in \Sigma \\
 a \ * & \rightarrow * \ a \quad \forall a \in \Sigma \\
 T & \rightarrow *
\end{align*}
\]

6. Define OddsRule(OR) = \{ \(f \mid \text{for all } x: f(2x+1) > f(2x) \} \).

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of OR.

\[
f \in \text{OR} \iff \forall x \exists t \ [\text{STP}(f, 2x, t) \& \text{STP}(f, 2x+1, t) \& (\text{VALUE}(f, 2x+1, t) > \text{VALUE}(f, 2x, t))]
\]

b.) Use Rice’s Theorem to prove that OR is undecidable. Be Complete.

Non-Trivial: \(I(x) = x \in \text{OR} \)
\[
Z(x) = 0 \not\in \text{OR}
\]

Immune to Implementation (Rice’s Strong Version)
Let \(f \) and \(g \) be two arbitrary indices of partial recursive functions such that \(\forall x f(x) = g(x) \)
\[
f \in \text{OR} \iff \forall x f(2x+1) > f(2x) \iff \forall x g(2x+1) > g(2x) \iff g \in \text{OR}
\]

Thus, OR is undecidable based on Rice’s Theorem (Strong Version)

c.) Show that OR is many-one reducible to Total = \{ \(f \mid \forall x f(x) \downarrow \} \).

Let \(f \) be an arbitrary index of some partial recursive function
Define \(G_f(x) = \exists y [f(2x+1) > f(2x)] \)

Clearly \(\forall x \ G_f(x) = 1 \) if \(f \in \text{OR} \) and \(\exists x \ G_f(x) \uparrow \) if \(f \not\in \text{OR} \)
\[
f \in \text{OR} \iff \forall x f(2x+1) > f(2x) \iff \forall x G_f(x) = 1 \iff G_f \in \text{Total}
\]
\[
f \not\in \text{OR} \iff \exists x \text{ either } f(2x+1) \uparrow \text{ or } f(2x) \uparrow \text{ or } f(2x+1) \leq f(2x) \iff \exists x \ G_f(x) \uparrow \iff G_f \not\in \text{Total}
\]
6 7. Consider the Venn diagram below. Identify the alphabetically labeled regions below (each representing a set of decision problems) to indicate characterizations as \(\text{co-RE}, \text{co-RE-Complete}, \text{RE}, \text{RE-Complete}, \text{RE-Hard}, \) and \(\text{Recursive} \). To answer this, just write in the labels associated with A, B, C, D, E, and F, choosing the most precise label for each case.

\[
\begin{array}{cccc}
A & B & C & D \quad E \quad F \quad \text{REC}
\end{array}
\]

7 8. We described the proof that 3SAT is polynomial reducible to \text{Subset-Sum}. You must repeat that.

Assuming a 3SAT expression \((\lnot a + \lnot b + \lnot c) (a + b + c) (a + \lnot b + c)\), fill in all omitted values (zeroes elements can be left as omitted) of the reduction from 3SAT to \text{Subset-Sum}.

\[
\begin{array}{ccccccc}
\text{a} & \text{b} & \text{c} & \lnot a + \lnot b + \lnot c & a + b + c & a + \lnot b + c \\
\hline
\text{a} & 1 & & 1 & 1 & \\
\text{\lnot a} & 1 & 1 & 1 & \\
\text{b} & 1 & & 1 & \\
\text{\lnot b} & 1 & 1 & 1 & \\
\text{c} & 1 & 1 & 1 & 1 \\
\text{\lnot c} & 1 & 1 & & \\
\text{C1} & & & & 1 \\
\text{C1'} & & & & 1 \\
\text{C2} & & & & 1 \\
\text{C2'} & & & & 1 \\
\text{C3} & & & & 1 \\
\text{C3'} & & & & 1 \\
\hline
1 & 1 & 1 & 3 & 3 & 3
\end{array}
\]
9. Consider the decision problem to determine if there is an Independent Set of vertices of size \(k > 0 \) in some undirected graph \(G = (V, E) \). Here we always assume that \(k \leq |V| \) and \(|V| > 0 \), for if not the answer is a resounding NO. An independent set, \(V' \), is any subset of \(V \), such that if \(t \) and \(u \) are in \(V' \) then \((t, u)\) is not an edge in \(E \). A Maximum Independent Set is an independent set of largest possible size for a given graph \(G = (V, E) \). This size is called the Independence Number of \(G \), and denoted \(\alpha(G) \). The problem of finding such a set is called the Maximum Independent Set Problem.

2 a.) Show that this decision problem, computing whether or not \(G \) has an independent set of vertices of size \(k \), is Turing reducible in polynomial time, relative to the size of the representation of \(G \), to the Maximum Independent Set Problem. Hint: \(\alpha(G) \) is useful here and no proof is required.

\[G \text{ has an Independent set of size } k \text{ iff } \alpha(G) \geq k \]

5 b.) Show that the Maximum Independent Set Problem, computing \(\alpha(G) \), is Turing reducible in polynomial time, relative to the size of the representation of \(G \), to the Independent Set decision problem. Your algorithm should ask no more than \(\log_2(|V|) \) questions of an Oracle for the Independent Set decision problem, \(IS(V,k) \) (does \(V \) have an independent set of size \(k \)?) You must present detailed pseudo code. I recommend you consider using the ceiling function in your code. Hint: \(\alpha(G) = |V| \) is the largest possible Independent Set size but can only be the correct value if \(|E| = 0 \) (totally disconnected graph). The worst case, \(\alpha(G) = 1 \), occurs only for a totally connected graph (every vertex connected to every other one). Thus, the range of values is \(1 \leq \alpha(G) \leq |V| \).

\[
\begin{align*}
\text{int } & \text{ lo } = 1; \text{ int hi } = |V|; \\
\text{while } (\text{lo} < \text{hi}) \{ \\
& \text{ int mid } = \text{ceiling}((\text{hi}+\text{lo})/2); \quad \text{ // Integer divide occurs here} \\
& \text{ if } (\text{IS}(V,\text{mid})) \text{ lo } = \text{mid; } \\
& \text{ else } \text{ hi } = \text{mid}-1; \\
\text{ return hi; }
\end{align*}
\]

1 c.) Using terms like P, NP, NP-Complete, NP-Equivalent, NP-Hard, and NP-Easy, what is the most precise categorization you can provide for the Maximum Independent Set Problem?

The problem is NP-Equivalent.

6 10. Consider the following set of independent tasks with associated task times:
(\(T1,3\)), (\(T2,5\)), (\(T3,7\)), (\(T4,6\)), (\(T5,2\)), (\(T6,8\)), (\(T7,1\))
Fill in the schedules for these tasks under the associated strategies below.

Greedy using the list order above:

\[
\begin{array}{cccccccccccc}
T1 & T1 & T1 & T3 & T3 & T3 & T3 & T3 & T3 & T5 & T5 & T7 \\
T2 & T2 & T2 & T2 & T2 & T4 & T4 & T4 & T4 & T4 & T6 & T6 \\
\end{array}
\]

Greedy using a reordering of the list so that longest running tasks appear earliest in the list:

\[
\begin{array}{cccccccccccc}
T6 & T6 \\
T3 & T3 & T3 & T3 & T3 & T4 \\
\end{array}
\]
11. Consider the Venn diagram below. Identify the alphabetically labeled regions below (each representing a set of decision problems) to indicate characterizations as co-NP, co-NP Complete, NP, NP-Complete, NP-Hard and P. To answer this, just write in the labels associated with A, B, C, D, E, and F. I gave you F for free.

A NP-Hard B NP-Complete C Co-NP-Complete D NP E Co-NP F P (det. poly)

If the area labeled “?” contains any sets outside of F (P), what characteristics would these sets have and would their existence settle the question, P = NP? If so, how; if not, why not?

This means that there is an element in NP ∩ co-NP that is not in F (the set P). Since such an item must be in NP to be in the intersection, the implication is then that P ≠ NP.

3 What is the consequence of a proof that set F = P = D ∩ E? This means that the area labeled “?” is empty. In particular, would that settle the question, P = NP? If so, how; if not, why not?

This means that NP ∩ Co-NP = F = P. That is similar to REC being the intersection of RE and Co-RE. As there, this does not mean RE = Co-RE (known to not be true) or RE = REC (also known to not be true), so we cannot conclude or deny that NP = Co-NP or that P = NP.

12. An ATM (Alternating Turing Machine) can be used to solve many interesting problems.

3 a.) What are the two possible node types for the root of each non-empty subtree used in an ATM? What are the semantics of each type?

A node can be an “or” (∨) or and “and” (∧) type.
If it’s an “or”, it returns true if any of the branches of the subtree return “true”. If it’s an “and”, it returns true if all of the branches of the subtree return “true”.

2 b.) What is the order of execution, relative to the size, N, of a given CNF Boolean expression, of the fastest parallel algorithm to solve QSAT in this model of computation? Briefly justify your claim.

Linear complexity: The depth of a tree branch is no greater than the number of variables, so it is limited by N as is checking an expression to see if it is true, so the entire process is O(N).