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4 1. Let set A be a non-empty Regular Language, and let B be a non-Regular Context-Free 
Language. For each of (REG) Regular, and (CFL) non-Regular Context-Free, specify if the 
language C can or cannot be of the given language type and prove your assertions. As always, 
assume A, B and C are over some finite alphabet, S.  

C = B/A = { x | w = xy, where w Î B and y Î A } 
Note: / is called Quotient and was extensively discussed in Class. 
You may use any well-known Regular and Context-Free Languages. E.g., every language described 
by a Regular Expression is Regular and the set { anbn | n>0 } is a CFL. 

REG: (Big Hint: C can be Regular so show A and B where B/A is Regular.  
Explicitly describe languages A, B and C and you are done). 

 B = { an bn | n>0 } A = {c}  C = Æ, which is clearly regular 
CFL: (Big Hint: C can be a CFL, so show A and B where B/A is a CFL.  
Explicitly describe languages A, B and C and you are done). 

 B = { an bn | n>0 } A = {l}  C = { an bn | n>0 }, which is clearly a non-regular CFL 
 

6 2. Let set A be a non-empty recursive set, and let B be an RE non-recursive set. For each of (REC) 
non-empty recursive, (RE) RE non-recursive, and (NRE) non-re, specify if the set C can or 
cannot be of the given set type and prove your assertions. Sets are subsets of the Natural Numbers. 

C = B // A = { x | x = y // z, where y Î B, z Î A and y // z is floor(y/z) if z>0; else y // 0 = 0 } 
Note: // is called limited division and was shown primitive recursive in Class Notes. 
You may assume that A has the characteristic function cA and also that it is the range of some total 
recursive function (algorithm) fA, and B is the range of some total recursive function fB. 

REC: (Big Hint: C can be REC so show non-empty REC set A and RE non-recursive set B such 
that B // A is REC. Explicitly describe sets A, B and C and you are done). 

 B = K = { f | f(f)¯ } A = {0}  C = {0}, which is clearly REC 
RE: (Big Hint: C can be RE so show non-empty REC set A and RE non-recursive set B such that 
B // A is RE. Explicitly describe sets A, B and C and you are done). 

 B = K = { f | f(f)¯ } A = {1}  C = K, which is clearly RE non-recursive 
NRE: (Big Hint: C must be RE. Prove this by showing a total recursive function whose range is C). 

 fC(<x,y>) = fB(x) // fA(y)  This enumerates all and only the members of B // A 
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8 3. Let S be some RE set. Prove that S is infinite recursive (decidable) if and only if S is the range of 

some monotonically increasing total recursive function (algorithm). Hints: To show S is infinite 
recursive, you must use its monotonically increasing enumerating function to show it is infinite and 
to provide its characteristic function cs. To show S is the range of some monotonically increasing 
function you must explicitly present that function, fS, and argue it is monotonically increasing and its 
range is S. Be sure to justify that the functions you create achieve the desired goals. 

Assume S is the range of fS, which is monotonically increasing. Then S can be decided by 

 cS(x) = $y y £ x [ fS(y) = = x ] 

As fS is mon. increasing, it will enumerate x on or before the x-th element listed, or it will 
never enumerate x if it is not in S. This ensures cS is a proper characteristic function for S. 

Assume S is infinite recursive. Then S has a characteristic function cS. We can then 
enumerate S by 

 fS(0) =  µ y [ cS (y) ]   First item in S 

 fS(x+1) =  µ y y > fS (x) [ cS (y) ] Next item from an infinite set 

7 4. Specify True (T) or False (F) for each statement. 

Statement T or F 
Membership in Phrase-Structured Languages is semi-decidable T 
Membership in Context-Sensitive Languages is unsolvable F 
Membership in Context-Free Languages can be solved in polynomial time T 
Membership in Regular Languages can be solved in linear time T 
The set of programs representing all and only algorithms is a Phrase-Structured Language F 
Every recursive set is recognized by some primitive recursive function F 
Every re set is enumerated by some primitive recursive function T 
PCP over a one-letter alphabet is decidable T 
An algorithm exists to determine if a Context-Sensitive Language is finite  F 
Every problem solvable in linear space is of linear time complexity F 
A proposed solution to an instance of Vertex Cover can be checked in linear time T 
Petri Net Reachability is at least a doubly exponential Problem T 
Every NP-Hard decision problem is NP-Complete F 
Every NP-Complete decision problem is NP-Equivalent T 
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4 5. Let P = <<x1,x2,…,xn>, <y1,y2,…,yn>>, xi,y1 Î S+, 1≤i≤n , be an arbitrary instance of PCP. We can 

use PCP’s undecidability to show the undecidability of the problem to determine if a Context 
Sensitive Grammar generates a non-empty language. I will start the grammar, G. You must 
complete it so it maps an instance of PCP to the non-emptiness problem for this L(G). 
Define G = ({S, T} È S, {*}, S, R), where R is the set of rules: 
S ® xi S yiR | xi T yiR  1 ≤ i ≤ n  (Note: the superscripted R means Reversed) 
// Write the rules for the rest of this CSG. 

a T a ® * T *  " a Î S 
* a ® a *  " a Î S 
a * ® * a  " a Î S 
T ® *   

 
6. Define OddsRule(OR) = { f | for all x: f(2x+1) > f(2x)  }. 

2 a.) Show some minimal quantification of some known primitive recursive predicate that provides an 
upper bound for the complexity of OR.  

f Î OR Û " x $  t [ STP(f, 2x, t) & STP (f, 2x+1, t) & ( VALUE(f, 2x+1, t)>VALUE(f, 2x, t) ) ] 
 

5 b.) Use Rice’s Theorem to prove that OR is undecidable. Be Complete. 

Non-Trivial: I(x) = x Î OR  
Z(x) = 0 Ï OR 

Immune to Implementation (Rice’s Strong Version) 
Let f and g be two arbitrary indices of partial recursive functions such that " x f(x) = g(x) 
f Î OR Û " x f(2x+1) > f(2x) Û " x g(2x+1) > g(2x) Û  g Î OR 
Thus, OR is undecidable based on Rice’s Theorem (Strong Version) 

4 c.) Show that OR is many-one reducible to Total = { f |  "x f(x)¯  }. 

Let f be an arbitrary index of some partial recursive function  
Define Gf(x) = $  y [ f(2x+1) > f(2x) ] 
Clearly " x Gf(x) = 1 if f Î OR and $  x Gf(x)­ if f Ï OR 
f Î OR Û " x f(2x+1) > f(2x) Û " x Gf(x) = 1 Þ  Gf Î Total 
f Ï OR Û $ x either f(2x+1)­ or f(2x)­  or f(2x+1) £  f(2x) Û $  x Gf(x)­ Þ  Gf Ï Total 
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6 7. Consider the Venn diagram below. Identify the alphabetically labeled regions below (each 

representing a set of decision problems) to indicate characterizations as co-RE, co-RE-Complete, 
RE, RE-Complete, RE-Hard, and Recursive. To answer this, just write in the labels associated 
with A, B, C, D, E, and F, choosing the most precise label for each case. 

  A RE-Hard_  B RE-Complete_  C Co-RE-Complete_  D RE  E Co-RE   F REC_ 

 

 

 

 

 

 

 

 

7 8. We described the proof that 3SAT is polynomial reducible to Subset-Sum. You must repeat that. 

  Assuming a 3SAT expression (~a + ~b + ~c) (a + b + c) (a + ~b + c), fill in all omitted values 
(zeroes elements can be left as omitted) of the reduction from 3SAT to Subset-Sum. 

 a b c ~a + ~b + ~c a + b + c a + ~b + c 
a 1    1 1 

~a 1   1   
b  1   1  

~b  1  1  1 
c   1  1 1 

~c   1 1   
C1    1   
C1’    1   
C2     1  
C2’     1  
C3      1 
C3’      1 

 1 1 1 3 3 3 

 
  

A 

D E F 

B C 
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 9. Consider the decision problem to determine if there is an Independent Set of vertices of size k>0 in 

some undirected graph G = (V, E). Here we always assume that k £ |V| and |V| > 0, for if not the 
answer is a resounding NO. An independent set, V’, is any subset of V, such that if t and u are in V’ 
then (t, u) is not an edge in E. A Maximum Independent Set is an independent set of largest 
possible size for a given graph G= (V, E).  This size is called the Independence Number of G, and 
denoted α(G). The problem of finding such a set is called the Maximum Independent Set 
Problem. 

2 a.) Show that this decision problem, computing whether or not G has an independent set of vertices of 
size k, is Turing reducible in polynomial time, relative to the size of the representation of G, to the 
Maximum Independent Set Problem. Hint: α(G) is useful here and no proof is required. 
 

G has an Independent set of size k iff a(G) ³  k 

5 b.) Show that the Maximum Independent Set Problem, computing α(G), is Turing reducible in 
polynomial time, relative to the size of the representation of G, to the Independent Set decision 
problem. Your algorithm should ask no more than log2(|V|) questions of an Oracle for the 
Independent Set decision problem, IS(V,k) (does V have an independent set of size k?) You must 
present detailed pseudo code. I recommend you consider using the ceiling function in your code. 
Hint: α(G) = |V| is the largest possible Independent Set size but can only be the correct value if  
|E| = 0 (totally disconnected graph). The worst case, α(G) = 1, occurs only for a totally connected 
graph (every vertex connected to every other one). Thus, the range of values is 1 £ α(G) £ |V|. 

int lo = 1; int hi = |V|; 
while (lo < hi) { 
 int mid = ceiling((hi+lo)/2);  // Integer divide occurs here 
 if (IS(V,mid)) lo = mid; 
 else hi = mid-1; 
return hi; 

1 c.) Using terms like P, NP, NP-Complete, NP-Equivalent, NP-Hard, and NP-Easy, what is the most 
precise categorization you can provide for the Maximum Independent Set Problem? 

 
The problem is NP-Equivalent. 

 
6 10. Consider the following set of independent tasks with associated task times: 

(T1,3), (T2,5), (T3,7), (T4,6), (T5,2), (T6,8), (T7,1) 
Fill in the schedules for these tasks under the associated strategies below. 
Greedy using the list order above: 

T1 T1 T1 T3 T3 T3 T3 T3 T3 T3 T5 T5 T7       

T2 T2 T2 T2 T2 T4 T4 T4 T4 T4 T4 T6 T6 T6 T6 T6 T6 T6 T6 
Greedy using a reordering of the list so that longest running tasks appear earliest in the list: 

T6 T6 T6 T6 T6 T6 T6 T6 T2 T2 T2 T2 T2 T1 T1 T1    

T3 T3 T3 T3 T3 T3 T3 T4 T4 T4 T4 T4 T4 T5 T5 T7    
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 11. Consider the Venn diagram below. Identify the alphabetically labeled regions below (each 

representing a set of decision problems) to indicate characterizations as co-NP, co-NP Complete, 
NP, NP-Complete, NP-Hard and P. To answer this, just write in the labels associated with A, B, C, 
D, E, and F. I gave you F for free. 

6  A NP-Hard_  B NP-Complete_  C Co-NP-Complete_  D NP  E Co-NP   F_P (det. poly)_ 

 

 

 

 

 

 
 
 
3  If the area labeled “?” contains any sets outside of F (P), what characteristics would these sets have 

and would their existence settle the question, P = NP? If so, how; if not, why not? 
 
This mean that there is an element in NP Ç co-NP that is not in F (the set P). Since such an 
item must be in NP to be in the intersection, the implication is then that P ¹ NP. 

 
3  What is the consequence of a proof that set F = P = D Ç E? This means that the area labeled “?” is 

empty. In particular, would that settle the question, P = NP?  If so, how; if not, why not? 
 
This mean that NP Ç Co-NP = F = P. That is similar to REC being the intersection of RE and 
Co-RE. As there, this does not mean RE = Co-RE (known to not be true) or RE = REC (also 
known to not be true), so we cannot conclude or deny that NP = Co-NP or that P = NP. 

 12. An ATM (Alternating Turing Machine) can be used to solve many interesting problems. 
3 a.) What are the two possible node types for the root of each non-empty subtree used in an ATM?  

What are the semantics of each type? 
 
A node can be an “or” (Ú) or and “and” (Ù) type.  
If it’s an “or”, it returns true if any of the branches of the subtree return “true”. If it’s an 
“and”, it returns true if all of the branches of the subtree return “true”. 

 
2 b.) What is the order of execution, relative to the size, N, of a given CNF Boolean expression, of the 

fastest parallel algorithm to solve QSAT in this model of computation? Briefly justify your claim. 
 
Linear complexity: The depth of a tree branch is no greater than the number of variables, so it 
is limited by N as is checking an expression to see if it is true, so the entire process is O(N). 

A 

D E F 

B C 
? 


