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• The Chomsky hierarchy classifies languages (sets over finite alphabets) into four types (Regular, 
Context-Free, Context-Sensitive and Phrase-Structured). Associated with each is a grammar type 
that generates languages of this type and a machine class that accepts languages of this type. The 
grammars have names that correspond to the language type, e.g., Context-Free Grammars. The 
machine hierarchy, corresponding to the language types, is Finite State, Pushdown, Linear Bounded 
and Turing Machine. All but Pushdown Automata have the same capability whether deterministic or 
non-deterministic. Only Finite State Automata have the property that they can be algorithmically 
reduced to a minimal form (in this case, minimal state). Undecidability problems abound for all but 
Regular Languages. However, all but Phrase-Structured languages have associated algorithms to 
determine membership. 

• The notation z = <x,y> denotes the pairing function with inverses x = <z>1 and y = <z>2.  
• The minimization notation µ y [P(…,y)] means the least y (starting at 0) such that P(…,y) is true. 

The bounded minimization (acceptable in primitive recursive functions) notation  
µ y (u£y£v) [P(…,y)] means the least y (starting at u and ending at v) such that P(…,y) is true. I 
define µ y (u£y£v) [P(…,y)] to be v+1, when no y satisfies this bounded minimization.  

• The tilde symbol, ~, means the complement. Thus, set ~S is the set complement of set S, and the 
predicate ~P(x) is the logical complement of predicate P(x). 

• A function P is a predicate if it is a logical function that returns either 1 (true) or 0 (false). Thus, 
P(x) means P evaluates to true on x, but we can also take advantage of the fact that true is 1 and 
false is 0 in formulas like y ´ P(x), which would evaluate to either y (if P(x)) or 0 (if ~P(x)). 

• A set S is recursive if S has a total recursive characteristic function cS, such that x Î S  Û cS(x). 
Note cS is a total predicate. Thus, it evaluates to 0 (false), if x Ï S. 

• When I say a set S is Recursively Enumerable (RE), unless I explicitly say otherwise, you may 
assume any of the following equivalent characterizations: 
1. S is either empty or the range of a total recursive function fS. 
2. S is the domain of a partial recursive function gS. 

• If I say a function g is partially computable, then there is an index g (we tend to overload the index 
as the function name), such that Fg(x) = F(x, g) = g(x). Here F is a universal partially recursive 
function.  
Moreover, there is a primitive recursive function STP, such that  
STP(g, x, t) is 1 (true), just in case g, started on x, halts in t or fewer steps.  
STP(g, x, t) is 0 (false), otherwise.  
Finally, there is another primitive recursive function VALUE, such that  
VALUE(g, x, t) is g(x), whenever STP(g, x, t).  
VALUE(g, x, t) is defined but meaningless if ~STP(g, x, t). 

• The notation f(x)¯ means that f converges when computing with input x (x Î Dom(f)). The notation 
f(x) means f diverges when computing with input x (x Ï Dom(f)). 

• When I ask you to show one set of indices, A, is many-one reducible to another, B, denoted  
A ≤m B, you must demonstrate a total computable function f, such that x Î A Û f(x) Î B. The 
stronger relationship is that A and B are many-one equivalent, A ºm B, requires that you show  
A ≤m B and B ≤m A. The related notion of one-one reducibility and equivalence require that the 
reducing function, f above, be 1-1. The notation just replaces the m with a 1, as in A ≤1 B. We can 
also replace the m or 1 with a t, as in A ≤t B, to indicate the notion of Turing reducibility. When we 
say A ≤t B, we mean there is some computable algorithm that uses an Oracle for B to solve A. 
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• The Halting Problem for any effective computational system is the problem to determine of an 

arbitrary effective procedure f and input x, whether or not f(x)¯. The set of all such pairs, K0, is a 
classic re non-recursive set. K0 is also known as Lu, the universal language. The related set, K, is the 
set of all effective procedures f such that f(f)¯ or more precisely Ff(f). K and K0 are classic RE-
Complete sets, meaning that every RE set many-one reduces to these hardest RE sets. 

• The Uniform Halting Problem is the problem to determine of an arbitrary effective procedure f, 
whether or not f is an algorithm (halts on all input). This set, TOTAL, is a classic non-RE, non-Co-
RE set. It is also called RE-Hard in our terminology. 

• In the computability domain, we usually categorize problems as Recursive, Recursively 
Enumerable (RE), Co-Recursively Enumerable (co-RE), RE-Complete, Co-RE-Complete, and 
RE-Hard (my own term to describe a set for which we can show a Turing reduction from some RE-
Complete, e.g., TOTAL is RE-Hard since K ≤t TOTAL).  

• When I ask for a reduction of one set of indices to another, the formal rule is that you must produce a 
function that takes an index of one function and produces the index of another having whatever 
property you require. However, I allow some laxness here. You can start with a function, given its 
index, and produce another function, knowing it will have a computable index. For example, given f, 
a unary function, I might define Gf, another unary function, by  
Gf(0) = f(0); Gf(y+1) = Gf(y) + f(y+1) 
This would get Gf(x) as the sum of the values of f(0)+f(1)+…+f(x). 

• The Post Correspondence Problem (PCP) is known to be undecidable. This problem is 
characterized by instances that are described by a number n>0 and two n-ary sequences of non-
empty words <x1,x2,…,xn>, <y1,y2,…,yn>. The question is whether or not there exists a sequence, 
i1,i2,…,ik, such that 1≤ij≤n, 1≤j≤k, and xi1xi2

…xik = yi1yi2
…yik  

• The related notion of polynomial reducibility and equivalence require that the reducing function, f 
above, be computable in polynomial time in the size of the instance of the element being checked. 
The notation just replaces the m with a p, as in A ≤p B and A ºp B. 

• A decision problem R is in NP if it can be solved by a non-deterministic Turing machine in 
polynomial time. Alternatively, Q is in NP if a proposed proof of any instance having answer yes 
can be verified by a deterministic Turing machine in polynomial time. The set Co-NP contains the 
complements of all problems in NP. 

• A decision problem R is NP-Complete if and only if it is in NP and, for any problem Q in NP, it is 
the case that Q ≤p R. A decision problem R is Co-NP-Complete if and only if it is in Co-NP and, 
for any problem Q in Co-NP, it is the case that Q ≤p R.  

• A function problem (typically optimization problem) F is NP-Hard if and only if there is an NP-
Complete problem Q that is polynomial time Turing-reducible (≤tp) to F. By saying Q ≤tp F, we 
mean that Q can be solved in polynomial time so long as it has an oracle for F. We often limit our 
domain of consideration to decision problems when talking of NP-Hard, but the concept also 
applies to function problems, especially to optimizations of problems in NP-Complete. 

• A function problem F is NP-Easy if and only if it is polynomial time Turing-reducible (≤tp) to some 
NP problem Q. By saying F ≤tp Q, we mean that F can be solved in polynomial time so long as it 
has an oracle for Q.  

• A function problem F is NP-Equivalent if and only if it is both NP-Hard and NP-Easy.  
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4 1. Let set A be a non-empty Regular Language, and let B be a non-Regular Context-Free 
Language. For each of (REG) Regular, and (CFL) non-Regular Context-Free, specify if the 
language C can or cannot be of the given language type and prove your assertions. As always, 
assume A, B and C are over some finite alphabet, S.  

C = B/A = { x | w = xy, where w Î B and y Î A } 
Note: / is called Quotient and was extensively discussed in Class. 
You may use any well-known Regular and Context-Free Languages. E.g., every language described 
by a Regular Expression is Regular and the set { anbn | n>0 } is a CFL. 

REG: (Big Hint: C can be Regular so show A and B where B/A is Regular.  
Explicitly describe languages A, B and C and you are done). 

 
 

CFL: (Big Hint: C can be a CFL, so show A and B where B/A is a CFL.  
Explicitly describe languages A, B and C and you are done). 

 
 

6 2. Let set A be a non-empty recursive set, and let B be an RE non-recursive set. For each of (REC) 
recursive, (RE) RE non-recursive, and (NRE) non-re, specify if the set C can or cannot be of the 
given set type and prove your assertions. Sets are subsets of the Natural Numbers. 

C = B // A = { x | x = y // z, where y Î B, z Î A and y // z is floor(y/z) if z>0; else y // 0 = 0 } 
Note: // is called limited division and was shown primitive recursive in Class Notes. 
You may assume that A has the characteristic function cA and also that it is the range of some total 
recursive function (algorithm) fA, and B is the range of some total recursive function fB. 
REC: (Big Hint: C can be REC so show non-empty REC set A and RE non-recursive set B such 
that B // A is REC. Explicitly describe sets A, B and C and you are done). 

 

 
RE: (Big Hint: C can be RE so show non-empty REC set A and RE non-recursive set B such that 
B // A is RE. Explicitly describe sets A, B and C and you are done). 

 

 
NRE: (Big Hint: C must be RE. Prove this by showing a total recursive function whose range is C). 
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8 3. Let S be some RE set. Prove that S is infinite recursive (decidable) if and only if S is the range of 

some monotonically increasing total recursive function (algorithm). Hints: To show S is infinite 
recursive, you must use its monotonically increasing enumerating function to show it is infinite and 
to provide its characteristic function cs. To show S is the range of some monotonically increasing 
function you must explicitly present that function, fS, and argue it is monotonically increasing and its 
range is S. Be sure to justify that the functions you create achieve the desired goals. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
7 4. Specify True (T) or False (F) for each statement. 

Statement T or F 
Membership in Phrase-Structured Languages is semi-decidable  
Membership in Context-Sensitive Languages is unsolvable  
Membership in Context-Free Languages can be solved in polynomial time  
Membership in Regular Languages can be solved in linear time  
The set of programs representing all and only algorithms is a Phrase-Structured Language  
Every recursive set is recognized by some primitive recursive function  
Every re set is enumerated by some primitive recursive function  
PCP over a one-letter alphabet is decidable  
An algorithm exists to determine if a Context-Sensitive Language is finite   
Every problem solvable in linear space is of linear time complexity  
A proposed solution to an instance of Vertex Cover can be checked in linear time  
Petri Net Reachability is at least a doubly exponential Problem  
Every NP-Hard decision problem is NP-Complete  
Every NP-Complete decision problem is NP-Equivalent  
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4 5. Let P = <<x1,x2,…,xn>, <y1,y2,…,yn>>, xi,y1 Î S+, 1≤i≤n , be an arbitrary instance of PCP. We can 

use PCP’s undecidability to show the undecidability of the problem to determine if a Context 
Sensitive Grammar generates a non-empty language. I will start the grammar, G. You must 
complete it so it maps an instance of PCP to the non-emptiness problem for this L(G). 
Define G = ({S, T} È S, {*}, S, R), where R is the set of rules: 
S ® xi S yiR | xi T yiR  1 ≤ i ≤ n  (Note: the superscripted R means Reversed) 
// Write the rules for the rest of this CSG. 

 

 

 

 
6. Define OddsRule(OR) = { f | for all x: f(2x+1) > f(2x)  }. 

2 a.) Show some minimal quantification of some known primitive recursive predicate that provides an 
upper bound for the complexity of OR.  

 
 

5 b.) Use Rice’s Theorem to prove that OR is undecidable. Be Complete. 
 

 
 

 
 

 
 

 
 

4 c.) Show that OR is many-one reducible to Total = { f |  "x f(x)¯  }. 
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6 7. Consider the Venn diagram below. Identify the alphabetically labeled regions below (each 

representing a set of decision problems) to indicate characterizations as co-RE, co-RE-Complete, 
RE, RE-Complete, RE-Hard, and Recursive. To answer this, just write in the labels associated 
with A, B, C, D, E, and F, choosing the most precise label for each case. 

  A__________  B__________  C__________  D__________ E__________  F__________ 

 

 

 

 

 

 

 

 
 

 

7 8. We described the proof that 3SAT is polynomial reducible to Subset-Sum. You must repeat that. 

  Assuming a 3SAT expression (~a + ~b + ~c) (a + b + c) (a + ~b + c), fill in all omitted values 
(zeroes elements can be left as omitted) of the reduction from 3SAT to Subset-Sum. 

 a b c ~a + ~b + ~c a + b + c a + ~b + c 
a       

~a       
b       

~b       
c       

~c       
C1       
C1’       
C2       
C2’       
C3       
C3’       

 1 1 1 3 3 3 

 
  

A 

D E F 

B C 
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 9. Consider the decision problem to determine if there is an Independent Set of vertices of size k>0 in 

some undirected graph G = (V, E). Here we always assume that k £ |V| and |V| > 0, for if not the 
answer is a resounding NO. An independent set, V’, is any subset of V, such that if t and u are in V’ 
then (t, u) is not an edge in E. A Maximum Independent Set is an independent set of largest 
possible size for a given graph G= (V, E).  This size is called the Independence Number of G, and 
denoted α(G). The problem of finding such a set is called the Maximum Independent Set 
Problem. 

2 a.) Show that this decision problem, computing whether or not G has an independent set of vertices of 
size k, is Turing reducible in polynomial time, relative to the size of the representation of G, to the 
Maximum Independent Set Problem. Hint: α(G) is useful here and no proof is required. 
 

 
5 b.) Show that the Maximum Independent Set Problem, computing α(G), is Turing reducible in 

polynomial time, relative to the size of the representation of G, to the Independent Set decision 
problem. Your algorithm should ask no more than log2(|V|) questions of an Oracle for the 
Independent Set decision problem, IS(V,k) (does V have an independent set of size k?) You must 
present detailed pseudo code. I recommend you consider using the ceiling function in your code. 
Hint: α(G) = |V| is the largest possible Independent Set size but can only be the correct value if  
|E| = 0 (totally disconnected graph). The worst case, α(G) = 1, occurs only for a totally connected 
graph (every vertex connected to every other one). Thus, the range of values is 1 £ α(G) £ |V|. 

 
 
 
 
 
 
 
 
 
 
 
 

1 c.) Using terms like P, NP, NP-Complete, NP-Equivalent, NP-Hard, and NP-Easy, what is the most 
precise categorization you can provide for the Maximum Independent Set Problem? 

 
6 10. Consider the following set of independent tasks with associated task times: 

(T1,3), (T2,5), (T3,7), (T4,6), (T5,2), (T6,8), (T7,1) 
Fill in the schedules for these tasks under the associated strategies below. 
Greedy using the list order above: 

                   

                   
Greedy using a reordering of the list so that longest running tasks appear earliest in the list: 
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 11. Consider the Venn diagram below. Identify the alphabetically labeled regions below (each 

representing a set of decision problems) to indicate characterizations as co-NP, co-NP Complete, 
NP, NP-Complete, NP-Hard and P. To answer this, just write in the labels associated with A, B, C, 
D, E, and F. I gave you F for free. 

6  A__________  B__________  C__________  D__________ E__________  F_P (det. poly)_ 

 

 

 

 

 

 
 
 
3  If the area labeled “?” contains any sets outside of F (P), what characteristics would these sets have 

and would their existence settle the question, P = NP? If so, how; if not, why not? 
 

 
 

 
3  What is the consequence of a proof that set F = P = D Ç E? This means that the area labeled “?” is 

empty. In particular, would that settle the question, P = NP?  If so, how; if not, why not? 
 

 
 

 
 12. An ATM (Alternating Turing Machine) can be used to solve many interesting problems. 
3 a.) What are the two possible node types for the root of each non-empty subtree used in an ATM?  

What are the semantics of each type? 
 
 
 
 
 
 

 
2 b.) What is the order of execution, relative to the size, N, of a given CNF Boolean expression, of the 

fastest parallel algorithm to solve QSAT in this model of computation? Briefly justify your claim. 

A 

D E F 

B C 
? 


