Complexity Theory Final Exam Topics

Charles E. Hughes
COT6410 - Spring 2023 Notes

Formal Languages and Automata Theory

Recognition Hierarchy

- Recognition models
- Finite State
- DFA = NFA
- Exponential explosion when go from DFA to NFA
- Reg Expressions, Regular Equations
- PDA (can be stateless)
- DPDA < NPDA
- Linear Bounded
- $\quad \operatorname{DLBA}\left(\mathrm{n}^{2}\right) \supseteq \operatorname{NLBA}(\mathrm{n})$ and may be better (Savitch)
- arXiv battle has arisen on this one
- LBAs closed under complement and so CSLs are
- Turing Machine
- \quad DTM $=$ NTM

Grammar Hierarchy

- Regular / Right Linear / Left Linear
- Arden's Theorem: $R=Q+R P, P$ does not contain lambda, $R=Q P^{*}$
- MyHill-Nerode (Consequences: unique min state and alternative to PL)
- CFGs
- Ambiguity (inherent versus just incidental to a grammar)
- Reduced Grammars and CNF (implications not constructions)
- O(N3) CFL parser based on CNF grammar - Dynamic Programming
- Incorrect traces (related result on complement of ww)
- CSGs
- Trace languages
- PSGs

Closure

- Closure and non-closure:
- Pumping Lemmas (What they are; not their proofs or applications)
- Meta approach with intersection with regular and subst.
- Why does it fail on CSLs?
- Various operations on CSLs, CFLs and Regular Languages
- Examples: Union, Intersection, Quotient, Complement, Prefix, Suffix, Substring
- Interactions
- What happens when sets interact:
- Can we get Regular, CFL non-Reg, CSL non-CFL, RE non-CSL?
- Decidable Problems and why they are decidable
- Examples: Membership, Emptiness, S*

Computability

Model Properties

- Models of computation and required elements (divergence, ability to branch on absence/presence)
- Determinism vs non-determinism; why non-det is not always better
- Relationships between rec, re, co-re, re-complete, non-re/non-co-re
- Proofs about relations
- re \& co-re iff rec; re iff semi-dec.;
- inf. rec iff range of mono increasing total function
- Various operations on non-re/non-co-re, re and recursive sets (Examples Sum, Product)

Complexity of Undecidables

- Use of quantified decidable predicates to get upper bound on complexity
- Reduction (many-one); m-1 degrees of unsolvability
- Rice's Theorem (including its proof)
- Applications of Rice's Theorem; when does it fail?
- Proof of re-completeness (re and known re-complete reduces to problem)

Post Correspondence

- Semi-Thue word problem to PCP (No details, quick pathway)
- Other rewrite models: Post Canonical, Thue, Post Normal, Tag
- PCP and context free grammars
- From any PCP instance, P, can specify CFGs, G1 and G2, such that $L(G 1) \cap L(G 2) \neq \varnothing$ iff P has a solution
- Merging these together to new grammar G with start symbol S and rule
- $\mathrm{S} \rightarrow \mathrm{S} 1 \mid \mathrm{S} 2$ where S 1 is start symbol of G 1 and S 2 of G 2
- We have that G is ambiguous iff P has a solution
- PCP and context sensitive grammars
- From any PCP instance, P, can specify CSG, G, such that $L(G) \neq \varnothing$ iff P has a solution; it is also the case that $L(G)$ is infinite if so
- Note that this is second proof of undecidability of emptiness for CSG

Trace Languages

- Trace languages (CSL) and complement of trace languages (CFL)
- $L=\Sigma^{*}$ for CFL, $L \neq \varnothing$ for CSL
- Quotients
- Given TM, M, specify CFGs, G1 and G2, such that $\mathrm{L}(\mathrm{G} 1) / \mathrm{L}(\mathrm{G} 2)=\mathrm{L}(\mathrm{M})$
- Consider terminal traces (even/odd; odd/even correctness)

Phrase Structured

- PSG
- Given TM, M, can specify PSG, G, such that $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$
- Every PSL is homomorphic image of a CSL
- Closure of CSL's under λ-free homomorphisms

Constant Execution Time

- Notion of arbitrary starting point
- Why is this re and not worse?
- What is notion of an infinite rather than unbounded tape?
- What is mortality and how does constant time TM relate to mortal TM?
- Finite Power of CFLs
- Reducing is $L=\Sigma^{*}$ to is $L=L^{2}$

Remember start point is to check if $\Sigma \cup\{\lambda\}$

- Reducing traces that have a fixed maximum length to $\exists n L^{n}=L^{n+1}$ Remember trick of a language with three parts (bad traces, pairs of configs, $\{\lambda\}$)

Factor Repl. with Residue

- Factor Replacement Systems with Residue
- Use residue to check for non-divisibility, thereby avoiding need for determinism
- $2 x+1 \rightarrow 6 x+4$
- $2 x \rightarrow x$
- Collatz Conjecture is that starting at any positive integer this eventually reaches 1 and cycles there on $1 \rightarrow 4 \rightarrow 2 \rightarrow 1$

Complexity Theory

Basics

- P, NP (verification vs non-det. solution)
- Co-NP
- NP-Hard, co-NP-Hard
- NP-Complete, co-NP-Complete
- Polynomial many-one versus polynomial Turing reductions

Base Plus Easy NP-C

- Polynomial-time bounded NDTM to SAT (basic idea)
- SAT to 3-SAT
- 3SAT to SubsetSum; SubsetSum to Partition
- Weighted MaxCut and Partition
- Integer Linear Programming Feasibility
- Is there an assignment that satisfies the constraints?
- SAT (not necessarily 3SAT) and 0-1 case.
- 3SAT to Independent Set problem (IS) for undirected graph (clause gadgets and added links)

Graph Problems

- 3SAT to Independent Set problem (IS) for undirected graph (clause gadgets and added links)
- k-vertex cover, k-coloring (3-coloring),
- Optimization versions: min vertex cover; min coloring
- Gadgets for each

Hamiltonian Path/Circuit

- Hamiltonian circuit (cycle)
- Gadget to show NP-Hard
- Traveling Salesman adds distances (weights); seeks circuit of distance $\leq K$
- Reduce HC to TSP set K to |V| and distances to 1 where there are links and to $\mathrm{K}+1$ otherwise
- Optimization version looks for minimum distance circuit
- Best known classical algorithm is 1.999^{n}
- Best known quantum algorithm is 1.728^{n}
- Finding Triangle Strips is NP-Complete
- NP-Hard by reducing Hamiltonian Path to Triangle Strips

Scheduling

- Scheduling with fixed number (p) of processors and no deadlines
- Goal is to finish all tasks as soon as possible
- This is an optimization version of a p-partition problem
- Deadline scheduling
- BinPacking uses all items in list so list could be times of tasks leading to an Optimization problem to minimize the number of processors while obeying a deadline
- Scheduling heuristics and anomalies
- Scheduling with partial ordering (dag)
- Unit execution scheduling of tree/forest and of anti-tree/anti-forest

Knapsack

- Knapsack is limited to one bin and asks for best fit (values \& weights)
- SubsetSum optimization problem for $\leq G$ when weight and value are same
- Knapsack 0-1 Problem

Dynamic Programming (differing dimensions $\mathrm{n}, \mathrm{W}: \mathrm{O}\left(\mathrm{n}^{*} \mathrm{~W}\right)$ vs $\mathrm{n}: ~ \mathrm{O}\left(2^{\mathrm{n}}\right)$)

- BinPacking allows multiple bins and optimizes number of bins of some fixed size; this problem is strongly NPComplete

Some Analogies

- Parallels and non-parallels to Recursive, RE, RE-Complete
- Co-RE, Co-RE-Complete, RE-Hard (Turing versus many-one reductions)
- NP-Easy, NP-Hard, NP-Equivalent
- NP-Equivalent Optimization Problems associated with SubsetSum (max SubsetSum less than a Goal value) -- reduction using power of two values
- K-Coloring (min coloring) - binary search

2-SAT

- 2-SAT
- Use of Implication Graph and SCC (Strongly Connected Components)
- Positive Min-Ones 2-SAT and relation to VC (Vertex Cover)
- NP-Equivalence based on VC

Big Picture

- Weakly versus Strongly NP-Hard/Complete
- $\mathrm{P} \subseteq \mathrm{NP} \subseteq P S P A C E=N P S P A C E \subseteq E X P T I M E \subseteq N E X P T I M E \subseteq E X P S P A C E$ $\ddagger 2$-EXPTIME \ddagger 3-EXPTIME $\ddagger \ldots \ddagger$ ELEMENTARY \ddagger PRF \ddagger REC
- $P \neq$ EXPTIME; At least one of these is true
- P \ddagger NP; NP \ddagger PSPACE; PSPACE $\nsubseteq E X P T I M E$
- NP \neq NEXPTIME; at least one of thsee is true
- NP \ddagger PSPACE
- PSPACE \ddagger EXPTIME
- EXPTIME \ddagger NEXPTIME
- Note that EXPTIME $=$ NEXPTIME iff $P=N P$
- Note that k-EXPTIME $\nsubseteq(k+1)$-EXPTIME, $k>0$
- PSPACE \neq EXPSPACE; At least one of these is true
- PSPACE \ddagger EXPTIME
- EXPTIME \nsubseteq EXPSPACE

ATMs

- ATM (Alternating Turing Machine) - This is just concept stuff with no details except all paths operate in paralell
- AP = PSPACE, where AP is solvable in polynomial time on an ATM
- QSAT is solvable by an alternating TM in polynomial time and polynomial space (Why?)
- QSAT is PSPACE-Complete
- Petri net reachability is EXPSPACE-hard and requires 2-

EXPTIME

- Presburger arithmetic is at least in 2-EXPTIME, at most in 3EXPTIME, and can be solved by an ATM with n alternating quantifiers in doubly exponential time

PSPACE

- Savitch's Theorem: NPSPACE(f(n)) \subseteq DPSPACE(f(n) $\left.{ }^{2}\right)$
- Uses extreme time-space tradeoff - we don't care about time, only space
- Limit depth of recursion in search for path from start to ending configuration
- Do this by a recursive binary search using all possible intermediaries
- Bad for time but good for max level of recursion
- Assume space is $\lg \mathrm{N}$ (valid for retaining node number or SAT assignments)
- Time for DFS (non-det or det) is $\mathrm{O}(\mathrm{N})$.
- Space for non-det is $\lg \mathrm{N}$; for det is $\mathrm{N} \lg \mathrm{N}$ (why?)
- With ignoring time can get $(\lg N)^{2}$ space. Shows poly growth.
- Time is $\mathrm{O}\left(\mathrm{N}^{\lg \mathrm{N}}\right)$

Functional Problems

- FP, FNP, TFNP
- Constraints
- Promise Problems
- Example is 4-coloring (planar is Promise Set; rest are maybes)
- Promise set of $\operatorname{VALUE}(f, x, t)$ when $\operatorname{STP}(f, x, t)$ is true
- CLP(R)

Khot's Conjecture

- Graph Coloring with pairwise constraints is NP-Hard even when we know there is a coloring that satisfies almost all constraints, and we just need a coloring that satisfies a small percentage
- if Khot's conjecture is true and $P \neq N P$, then NP-Hard problems not only require exponential time but also getting good, generally applicable, polynomial-time approximations is hard

