COT 6410	Spring 2023	Midterm	Name:	KEY	
Raw Score	<u> </u>	Grade:			

6 1. In each case below, consider R1 to be Regular, R2 to be finite, and L1 and L2 to be non-regular CFLs. Fill in the three columns with Y or N, indicating what kind of language L can be. No proofs are required. Read ⊆ as "contained in and may equal."

Put Y in all that are possible and N in all that are not.

Definition of L	Regular?	CFL, non-Regular?	Not even a CFL?
$L = L1 \cap R2$	Y	N	N
$\mathbf{L} = \mathbf{L}1 - \mathbf{L}2$	Y	Y	Y
$\mathbf{L} = \boldsymbol{\Sigma}^* - \mathbf{R}1$	Y	N	N
L⊆L1	Y	Y	Y

6 2. Choosing from among (D) decidable, (U) undecidable, categorize each of the following decision problems. No proofs are required. L is a language over Σ .

Problem / Language Class	Regular	Context Free	Context Sensitive	Phrase Structured
L contains L ² ?	D	U	U	U
L contains Σ ?	D	D	D	D
L is cofinite ?	D	D	U	U

5 3. Prove that any class of languages, *C*, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Cut with Regular Sets, denoted by the operator ∇, where L ∈ C, R is Regular, L and R are both over the alphabet Σ, and

 $L \nabla R = \{ w \mid w = xy, \text{ for } x \in \Sigma^+, y \in R, \text{ and either } xy \in L \text{ or } yx \in L \}.$

You may assume substitution $f(a) = \{a, a'\}$, and homomorphisms g(a) = a' and

 $h(a) = a, h(a') = \lambda$. Here $a \in \Sigma$ and a' is a new character associated with each such $a \in \Sigma$. You only need give me the definition of $L \nabla R$ in an expression that obeys the above closure properties; you do not need to prove or even justify your expression.

 $L \nabla R = h(f(L) \cap (R g(\Sigma^{+}) \cup g(\Sigma^{+}) R))$

4 4. Specify True (T) or False (F) for each statement.

Statement	
The Context Sensitive Languages are closed under homomorphism	F
The Post Correspondence Problem is undecidable if $ \Sigma = 1$	F
The predicate STP(f,x,t) is primitive recursive	T
If $\mathbf{P} \leq_{m} \mathbf{Halt}$ then \mathbf{P} cannot be decidable	F
The RE sets are closed under intersection	T
Myhill-Nerode proves that every regular language has a minimum state NFA	F
If P is re and Rice's Theorem applies to P then P is re-Complete	T
The correct terminating traces of a Turing Machine's Computations form a CFL	F

4 5. Let P = <X = <aba, bb, a>, Y = <bab, b, baa>>, Σ = {a,b}, be an instance of PCP. Present a context-free grammar, G, associated with this instance of PCP, P, such that L(G) is ambiguous if and only if there is a solution to P. This answer must a specific instance of the general construction that uses the above X and Y.
Define C = ((S, Y, Y), Σ, P, S) where P is the set of rules (this is your ish);

Define $G = (\{S, X, Y\}, \Sigma, R, S)$ where R is the set of rules (this is your job):

 $S \rightarrow X \mid Y$ $S \rightarrow aba X [1] \mid bb X [2] \mid a X [3] \mid aba [1] \mid bb [2] \mid a [3]$ $S \rightarrow bab Y [1] \mid b Y [2] \mid baa Y [3] \mid bab [1] \mid b [2] \mid baa [3]$

12 6. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

a.) B = { f | for all x, $\phi_f(x) = f$ }

$\forall x \exists t \ [\ STP(f,x,t) \& VALUE(f,x,t) = x]$	<u>NRNC</u>
<pre>b.) C = { f domain(\u03c6_f) contains the number 0 }</pre>	
<u> </u>	RE
c.) D = { <f, x=""> $\phi_f(x) \text{ takes at least 10 steps to converge }$</f,>	
$\sim STP(f, x, 9)$	REC
d.) A = { f range(\u03c6f) does not contain the number 0 }	
$ \forall \langle x, t \rangle [STP(f,x,t) \Rightarrow VALUE(f,x,t) \neq 0] $	Co-RE

2 7. Looking back at Question 6, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.

a) <u>X</u> b) <u>X</u> c) <u>d) X</u>

3 8. We wish to prove that, if S recursively enumerable and dom(gs) = S, that we can create an algorithm, fs, such that x ∈ S iff fs(x) = x and x ∉ S iff fs(x)[↑].

 $f_{S}(x) = \underline{x * \exists t STP(g_{S}, x, t)}$

- 6 9. Let set A be an re non-recursive (undecidable) set that does not contain the value 0, and let B be a non-empty recursive (decidable) set. Consider C = { z | z = x y, where x ∈ A and y ∈ B }. // -- is limited subtraction (produces max (0, x y), which is primitive recursive) For (a)-(c), either show sets A and B and the resulting set C, such that C has the specified property (argue convincingly that it has the correct property) or demonstrate (prove by construction) that this property cannot hold.
 - **a**. Can **C** be recursive?

Circle Y

or N.

Let A = K and B = %C = K - % = % which is recursive

b. Can **C** be re non-recursive?

Let A = K and $B = \{0\}$ $C = K - \{0\} \equiv_m K$ which is re, non-recursive..

c. Can C be non-re? Circle Y or You may assume A = range(f_A), B = range(f_B), for some algorithms f_A, f_B.

C can be enumerated by $f_C(\langle x, y \rangle) = f_A(x) - f_B(y)$ where the minus is limited subtraction. Thus, C is always re.

10. Define NonTrivialDomain (NTD) = $\{ f | |Domain(f)| > 1 \}$.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of NTD.

 $\underline{\exists \langle x, y, t \rangle} [x \neq y \& STP(f, x, t) \& STP(f, y, t)]$

4 b.) Use Rice's Theorem to prove that NTD is undecidable.

3

 $\begin{array}{l} Dom(S) = \$ \ and \ |\$| > 1 \ so \ S \ \in \ NTD \ (Note \ all \ PRFs \ are \ in \ NTD) \\ Dom(\uparrow) = \{\} \ and \ |\ \{\} \ | = 0 \ so \ \uparrow \not \in \ NTD \\ Thus, \ NTD \ is \ non-trivial \\ Let \ f \ and \ g \ be \ indices \ of \ functions \ where \ dom(f) = \ dom(g). \\ f \ \in \ NTD \ \Leftrightarrow |dom(f)| > 1 \\ \Leftrightarrow |dom(g)| > 1 \\ \Leftrightarrow g \ \in \ NTD \end{array}$

This shows NTD is undecidable due to Rice's Theorem -- Weak Form based on domains

3 c.) Consider NonTrivialRange (NTR) = { f | |Range(f)| > 1 }. Show that NTR \leq_m NTD.

Let f be an arbitrary index. Define $\forall x \ Gf(x) = \exists \langle y, t \rangle [STP(f,y,t) \& VALUE(f,y,t) = x]$ Note this is $\exists y [f(y) = x]$ but there is an issue in writing it this way with f a procedure $f \in NTR \Leftrightarrow |Range(f)| > 1 \Rightarrow \exists \langle x0, x1 \rangle, \ x0 \neq x1$, where $x0 \& x1 \in Range(f)$ $\Rightarrow Gf(x0) \checkmark and \ Gf(x1) \checkmark, \ x0 \neq x1 \Rightarrow Gf \in NTD$. Thus, $f \in NTR \Rightarrow Gf \in NTD$ $f \notin NTR \Leftrightarrow |Range(f)| \leq 1$. But then either $\forall y \ f(y) \uparrow \Rightarrow |dom(Gf)| = 0$ $Or \ \exists x \forall y \ f(y) \checkmark \Rightarrow f(y) = x \ and \ so \ Gf(x) \checkmark but \ Gf(z) \uparrow if \ z \neq x \Rightarrow |dom(Gf)| = 1$ Thus, $f \notin NTR \Rightarrow Gf \notin NTD$ and so $f \in NTR \Leftrightarrow Gf \in NTD$ d.) Show that NTD $\leq_m NTR$.

Let f be an arbitrary index, Define $\forall x \ Gf(x) = x * \exists t \ [\ STP(f,x,t) \] = f(x) - f(x) + x$ Clearly $Gf(x) = x \Leftrightarrow x \in dom(f)$ and $Gf(x) \uparrow if x \notin dom(f)$ Thus, Range(Gf) = dom(Gf) = dom(f) and so their cardinalities are the same. And so, $f \in NTD \Leftrightarrow Gf \in NTR$