\qquad

6 1. In each case below, consider $\mathbf{R} 1$ to be Regular, $\mathbf{R 2}$ to be finite, and $\mathbf{L} 1$ and $\mathbf{L} 2$ to be non-regular CFLs. Fill in the three columns with \mathbf{Y} or \mathbf{N}, indicating what kind of language \mathbf{L} can be. No proofs are required. Read \subseteq as "contained in and may equal."
Put \mathbf{Y} in all that are possible and \mathbf{N} in all that are not.

Definition of \mathbf{L}	Regular?	CFL, non-Regular?	Not even a CFL?
$\mathbf{L}=\mathbf{L} 1 \cap \mathbf{R 2}$	Y	N	N
$\mathbf{L}=\mathbf{L} 1-\mathbf{L} 2$	Y	Y	Y
$\mathbf{L}=\Sigma^{*}-\mathbf{R 1}$	Y	N	N
$\mathbf{L} \subseteq \mathbf{L} 1$	Y	Y	Y

6 2. Choosing from among (D) decidable, (U) undecidable, categorize each of the following decision problems. No proofs are required. \mathbf{L} is a language over $\boldsymbol{\Sigma}$.

Problem / Language Class	Regular	Context Free	Context Sensitive	Phrase Structured
L contains L'? ?	D	U	U	U
L contains Σ ?	D	D	D	D
$\|L\|$ is cofinite?	D	D	U	U

3. Prove that any class of languages, \boldsymbol{C}, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Cut with Regular Sets, denoted by the operator ∇, where $\mathbf{L} \in \boldsymbol{C}, \mathbf{R}$ is Regular, \mathbf{L} and \mathbf{R} are both over the alphabet $\boldsymbol{\Sigma}$, and
$L \nabla R=\left\{w \mid w=x y\right.$, for $x \in \Sigma^{+}, y \in R$, and either $x y \in L$ or $\left.y x \in L\right\}$.
You may assume substitution $\mathbf{f}(\mathbf{a})=\{\mathbf{a}, \mathbf{a}\}$, and homomorphisms $\mathbf{g}(\mathbf{a})=\mathbf{a}^{\prime}$ and
$\mathbf{h}(\mathbf{a})=\mathbf{a}, \mathbf{h}\left(\mathbf{a}^{\prime}\right)=\boldsymbol{\lambda}$. Here $\mathbf{a} \in \boldsymbol{\Sigma}$ and \mathbf{a}^{\prime} is a new character associated with each such $\mathbf{a} \in \boldsymbol{\Sigma}$.
You only need give me the definition of $\mathbf{L} \nabla \mathbf{R}$ in an expression that obeys the above closure properties; you do not need to prove or even justify your expression.
$\mathbf{L} \nabla \mathbf{R}=\underset{\sim}{\mathbf{h}\left(f(L) \cap\left(\mathbf{R g}\left(\Sigma^{+}\right) \cup \mathbf{g}\left(\Sigma^{+}\right) \mathbf{R}\right)\right.}$

4

4. Specify True (T) or False (F) for each statement.

Statement	T or \mathbf{F}
The Context Sensitive Languages are closed under homomorphism	\boldsymbol{F}
The Post Correspondence Problem is undecidable if $\|\boldsymbol{\Sigma}\|=\mathbf{1}$	\boldsymbol{F}
The predicate $\mathbf{S T P}(\mathbf{f}, \mathbf{x}, \mathbf{t})$ is primitive recursive	\boldsymbol{T}
If $\mathbf{P} \leq_{\mathrm{m}}$ Halt then \mathbf{P} cannot be decidable	\boldsymbol{F}
The $\mathbf{R E}$ sets are closed under intersection	\boldsymbol{T}
Myhill-Nerode proves that every regular language has a minimum state NFA	\boldsymbol{F}
If \mathbf{P} is re and Rice's Theorem applies to \mathbf{P} then \mathbf{P} is re-Complete	\boldsymbol{T}
The correct terminating traces of a Turing Machine's Computations form a CFL	\boldsymbol{F}

4 5. Let $\mathbf{P}=<\mathbf{X}=<\mathbf{a b a}, \mathbf{b b}, \mathbf{a}>, \mathbf{Y}=<\mathbf{b a b}, \mathbf{b}, \mathbf{b a a} \gg, \boldsymbol{\Sigma}=\{\mathbf{a}, \mathbf{b}\}$, be an instance of $\mathbf{P C P}$. Present a context-free grammar, \mathbf{G}, associated with this instance of PCP, \mathbf{P}, such that $\mathcal{L}(\mathbf{G})$ is ambiguous if and only if there is a solution to \mathbf{P}. This answer must a specific instance of the general construction that uses the above \mathbf{X} and \mathbf{Y}.
Define $\mathbf{G}=(\mathbf{\{} \mathbf{S}, \mathbf{X}, \mathbf{Y}\}, \boldsymbol{\Sigma}, \mathbf{R}, \mathbf{S})$ where \mathbf{R} is the set of rules (this is your job):

$$
\begin{array}{lll}
S & \rightarrow X \mid Y \\
S & \rightarrow a b a X[1]|b b X[2]| a X[3] \quad|a b a[1]| b b[2] \mid a[3] \\
S & \rightarrow b a b Y[1] \mid b Y[2] & |b a a Y[3]| b a b[1]|b[2] \quad| b a a[3]
\end{array}
$$

12 6. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\mathbf{B}=\left\{\mathbf{f} \mid\right.$ for all $\left.\mathrm{x}, \varphi_{\mathrm{f}}(\mathrm{x})=\mathbf{f}\right\}$
$\forall x \exists t[\operatorname{STP}(f, x, t) \& \operatorname{VALUE}(f, x . t)=x]$ NRNC
b.) $C=\left\{f \mid\right.$ domain $\left(\varphi_{f}\right)$ contains the number 0$\}$
\qquad $R E$
c.) $D=\left\{\langle f, x\rangle \mid \varphi_{f}(x)\right.$ takes at least 10 steps to converge $\}$
$\sim \operatorname{STP}(f, x, 9)$ \qquad
d.) $A=\left\{f \mid \operatorname{range}\left(\varphi_{f}\right)\right.$ does not contain the number 0$\}$
$\forall<x, t>[\operatorname{STP}(f, x, t) \Rightarrow \operatorname{VALUE}(f, x, t) \neq 0]$
Co-RE

2 7. Looking back at Question 6, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.
a) $\quad X$
b) \qquad c) \qquad d) X

3 8. We wish to prove that, if \mathbf{S} recursively enumerable and $\operatorname{dom}\left(\mathbf{g s}_{\mathbf{S}}\right)=\mathbf{S}$, that we can create an algorithm, $\mathbf{f s}$, such that $\mathbf{x} \in \mathbf{S}$ iff $\mathbf{f s}(\mathbf{x})=\mathbf{x}$ and $\mathbf{x} \notin S \operatorname{iff} \mathbf{f s}(\mathbf{x}) \uparrow$.
$\mathrm{fs}(\mathrm{x})=\underset{x * \exists t \operatorname{STP}\left(g_{S}, x, t\right)}{ }$

6 9. Let set \mathbf{A} be an re non-recursive (undecidable) set that does not contain the value $\mathbf{0}$, and let \mathbf{B} be a non-empty recursive (decidable) set.
Consider $\mathbf{C}=\{\mathbf{z} \mid \mathbf{z}=\mathbf{x}-\mathbf{y}$, where $\mathbf{x} \in \mathbf{A}$ and $\mathbf{y} \in \mathbf{B}\}$. // -- is limited subtraction (produces max ($0, x-y$), which is primitive recursive)
For (a)-(c), either show sets \mathbf{A} and \mathbf{B} and the resulting set \mathbf{C}, such that \mathbf{C} has the specified property (argue convincingly that it has the correct property) or demonstrate (prove by construction) that this property cannot hold.
a. Can \mathbf{C} be recursive?

Let $A=K$ and $B=\boldsymbol{\aleph}$
$C=K-\mathfrak{K}=\mathfrak{K}$ which is recursive
b. Can \mathbf{C} be re non-recursive?

Circle \mathbf{Y} or \mathbf{N}.
Let $A=K$ and $B=\{0\}$
$C=K-\{0\} \equiv_{m} K$ which is re, non-recursive..
c. Can \mathbf{C} be non-re?

Circle \mathbf{Y} or \mathbf{N}.
You may assume $A=\operatorname{range}\left(\mathbf{f}_{\mathrm{A}}\right), \mathbf{B}=\operatorname{range}\left(\mathbf{f}_{\mathrm{B}}\right)$, for some algorithms $\mathbf{f}_{\mathrm{A}}, \mathbf{f}_{\mathrm{B}}$.
C can be enumerated by $f_{C}(\langle x, y\rangle)=f_{A}(x)-f_{B}(y)$
where the minus is limited subtraction.
Thus, C is always re.
10. Define NonTrivialDomain (NTD) $=\{\mathbf{f}| | \operatorname{Domain}(\mathbf{f}) \mid>1\}$.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of NTD.

$\exists\langle x, y, t\rangle\lceil x \neq y \& \operatorname{STP}(f, x, t) \& \operatorname{STP}(f, y, t)]$

4 b.) Use Rice's Theorem to prove that NTD is undecidable.
$\operatorname{Dom}(S)=\mathfrak{K}$ and $|\mathfrak{K}|>1$ so $S \in$ NTD (Note all PRFs are in NTD)
$\operatorname{Dom}(\uparrow)=\{ \}$ and $|\} \mid=0$ so $\uparrow \notin N T D$
Thus, NTD is non-trivial
Let f and g be indices of functions where $\operatorname{dom}(f)=\operatorname{dom}(g)$.

$$
\begin{aligned}
f \in N T D & \Leftrightarrow|\operatorname{dom}(f)|>1 & & \text { By definition } \\
& \Leftrightarrow|\operatorname{dom}(g)|>1 & & \text { As dom }(f)=\operatorname{dom}(g) \\
& \Leftrightarrow g \in N T D & &
\end{aligned}
$$

This shows NTD is undecidable due to Rice's Theorem -- Weak Form based on domains

3 c.) Consider NonTrivialRange (NTR) $=\{\mathbf{f}| | \operatorname{Range}(\mathbf{f}) \mid>\mathbf{1}\}$. Show that NTR \leq_{m} NTD.
Let f be an arbitrary index. Define $\forall x G f(x)=\exists<y, t>[S T P(f, y, t) \& \operatorname{VALUE}(f, y, t)=x]$
Note this is $\exists y[f(y)=x]$ but there is an issue in writing it this way with f a procedure
$f \in N T R \Leftrightarrow|\operatorname{Range}(f)|>1 \Rightarrow \exists<x 0, x 1>, x 0 \neq x 1$, where $x 0 \& x 1 \in \operatorname{Range}(f)$
$\Rightarrow G f(x 0) \downarrow$ and $G f(x 1) \downarrow, x 0 \neq x 1 \Rightarrow G f \in N T D$. Thus, $f \in N T R \Rightarrow G f \in N T D$
$f \notin N T R \Leftrightarrow|\operatorname{Range}(f)| \leq 1$. But then either $\forall y f(y) \uparrow \Rightarrow|\operatorname{dom}(G f)|=0$
Or $\exists x \not y f(y) \downarrow \Rightarrow f(y)=x$ and so $G f(x) \downarrow$ but $G f(z) \uparrow$ if $z \neq x \Rightarrow|\operatorname{dom}(G f)|=1$
Thus, $f \notin N T R \Rightarrow G f \notin N T D$ and so $f \in N T R \Leftrightarrow G f \in N T D$
3 d.) Show that NTD \leq_{m} NTR.
Let f be an arbitrary index, Define $\forall x G f(x)=x * \exists t[S T P(f, x, t)]=f(x)-f(x)+x$
Clearly $G f(x)=x \Leftrightarrow x \in \operatorname{dom}(f)$ and $G f(x)$ 个if $x \notin \operatorname{dom}(f)$
Thus, $\operatorname{Range}(G f)=\operatorname{dom}(G f)=\operatorname{dom}(f)$ and so their cardinalities are the same.
And so, $f \in N T D \Leftrightarrow G f \in N T R$

