6 1. In each case below, consider R1 to be Regular, R2 to be finite, and L1 and L2 to be non-regular CFLs. Fill in the three columns with Y or N, indicating what kind of language L can be. No proofs are required. Read \subseteq as “contained in and may equal.” Put Y in all that are possible and N in all that are not.

<table>
<thead>
<tr>
<th>Definition of L</th>
<th>Regular?</th>
<th>CFL, non-Regular?</th>
<th>Not even a CFL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L = L_1 \cap R_2$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>$L = L_1 - L_2$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$L = \Sigma^* - R_1$</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>$L \subseteq L_1$</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

6 2. Choosing from among (D) decidable, (U) undecidable, categorize each of the following decision problems. No proofs are required. L is a language over Σ.

<table>
<thead>
<tr>
<th>Problem / Language Class</th>
<th>Regular</th>
<th>Context Free</th>
<th>Context Sensitive</th>
<th>Phrase Structured</th>
</tr>
</thead>
<tbody>
<tr>
<td>L contains L^2?</td>
<td>D</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>L contains Σ?</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>$</td>
<td>L</td>
<td>$ is cofinite?</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

5 3. Prove that any class of languages, C, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Cut with Regular Sets, denoted by the operator \triangledown, where $L \in C$, R is Regular, L and R are both over the alphabet Σ, and

$L \triangledown R = \{ w \mid w = xy, \text{ for } x \in \Sigma^*, y \in R, \text{ and either } xy \in L \text{ or } yx \in L \}.$

You may assume substitution $f(a) = \{a, a'\}$, and homomorphisms $g(a) = a'$ and $h(a) = a, h(a') = \lambda$. Here $a \in \Sigma$ and a' is a new character associated with each such $a \in \Sigma$.

You only need give me the definition of $L \triangledown R$ in an expression that obeys the above closure properties; you do not need to prove or even justify your expression.

$L \triangledown R = \bigcup h (f(L) \cap (R g(\Sigma^*) \cup g(\Sigma^*) R))$

4 4. Specify True (T) or False (F) for each statement.

<table>
<thead>
<tr>
<th>Statement</th>
<th>T or F</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Context Sensitive Languages are closed under homomorphism</td>
<td>F</td>
</tr>
<tr>
<td>The Post Correspondence Problem is undecidable if $</td>
<td>\Sigma</td>
</tr>
<tr>
<td>The predicate $\text{STP}(f,x,t)$ is primitive recursive</td>
<td>T</td>
</tr>
<tr>
<td>If $P \leq_m \text{Halt}$ then P cannot be decidable</td>
<td>F</td>
</tr>
<tr>
<td>The RE sets are closed under intersection</td>
<td>T</td>
</tr>
<tr>
<td>Myhill-Nerode proves that every regular language has a minimum state NFA</td>
<td>F</td>
</tr>
<tr>
<td>If P is re and Rice’s Theorem applies to P then P is re-Complete</td>
<td>T</td>
</tr>
<tr>
<td>The correct terminating traces of a Turing Machine’s Computations form a CFL</td>
<td>F</td>
</tr>
</tbody>
</table>
4 5. Let $P = \langle X = \langle \text{aba, bb, a} \rangle, Y = \langle \text{bab, b, baa} \rangle, \Sigma = \{a,b\} \rangle$ be an instance of PCP. Present a context-free grammar, G, associated with this instance of PCP, P, such that $L(G)$ is ambiguous if and only if there is a solution to P. This answer must a specific instance of the general construction that uses the above X and Y.

Define $G = (\{S, X, Y\}, \Sigma, R, S)$ where R is the set of rules (this is your job):

\[
\begin{align*}
S & \rightarrow X \mid Y \\
S & \rightarrow \text{aba }X/1 \mid \text{bb }X/2 \mid a X/3 \mid \text{aba }/1 \mid \text{bb }/2 \mid a/3 \\
S & \rightarrow \text{bab }Y/1 \mid \text{b }Y/2 \mid \text{baa }Y/3 \mid \text{bab }/1 \mid \text{b }/2 \mid \text{baa }/3
\end{align*}
\]

12 6. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

a.) $B = \{ f \mid \text{for all } x, \ \varphi_f(x) = f \}$

\[
\forall x \exists t \ [\text{STP}(f,x,t) \land \text{VALUE}(f,x,t) = x] \quad \text{NRNC}
\]

b.) $C = \{ f \mid \text{domain}(\varphi_f) \text{ contains the number 0 } \}$

\[
\exists t \ [\text{STP}(f,0,t)] \quad \text{RE}
\]

c.) $D = \{ f, x \mid \varphi_f(x) \text{ takes at least 10 steps to converge } \}$

\[
\neg \text{STP}(f,x,9) \quad \text{REC}
\]

d.) $A = \{ f \mid \text{range}(\varphi_f) \text{ does not contain the number 0 } \}$

\[
\forall <x,t> \ [\text{STP}(f,x,t) \implies \text{VALUE}(f,x,t) \neq 0] \quad \text{Co-RE}
\]

2 7. Looking back at Question 6, which of these are candidates for using Rice’s Theorem to show their unsolvability? Check all for which Rice Theorem might apply.

a) ___ X b) ___ X c) ____ d) ___ X
3 8. We wish to prove that, if \(S \) recursively enumerable and \(\text{dom}(g_S) = S \), that we can create an algorithm, \(f_S \), such that \(x \in S \) iff \(f_S(x) = x \) and \(x \notin S \) iff \(f_S(x) \uparrow \).

\[
f_S(x) = x * \exists t \ STP(g_S, x, t)
\]

6 9. Let set \(A \) be an re non-recursive (undecidable) set that does not contain the value 0, and let \(B \) be a non-empty recursive (decidable) set.
Consider \(C = \{ z \mid z = x - y \), where \(x \in A \) and \(y \in B \} \). // -- is limited subtraction (produces max (0, x – y), which is primitive recursive)
For (a)-(c), either show sets \(A \) and \(B \) and the resulting set \(C \), such that \(C \) has the specified property (argue convincingly that it has the correct property) or demonstrate (prove by construction) that this property cannot hold.

a. Can \(C \) be recursive? Circle \(Y \) or \(N \).

 Let \(A = K \) and \(B = \aleph \)
 \(C = K - \aleph = \aleph \) which is recursive

b. Can \(C \) be re non-recursive? Circle \(Y \) or \(N \).

 Let \(A = K \) and \(B = \{0\} \)
 \(C = K - \{0\} \cong m K \) which is re, non-recursive.

c. Can \(C \) be non-re? Circle \(Y \) or \(\nabla \).
 You may assume \(A = \text{range}(f_A) \), \(B = \text{range}(f_B) \), for some algorithms \(f_A, f_B \).

\(C \) can be enumerated by \(f_C(<x,y>) = f_A(x) - f_B(y) \) where the minus is limited subtraction.
Thus, \(C \) is always re.
10. Define **NonTrivialDomain (NTD)** = \{ f \mid |\text{Domain}(f)| > 1 \}.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of **NTD**.

\[\exists <x,y,t> [x \neq y \& \text{STP}(f,x,t) \& \text{STP}(f,y,t)] \]

4 b.) Use Rice’s Theorem to prove that **NTD** is undecidable.

\[\text{Dom}(S) = \mathcal{N} \text{ and } |\mathcal{N}| > 1 \text{ so } S \in \text{NTD} \text{ (Note all PRFs are in NTD)} \]

\[\text{Dom}(\uparrow) = \{ \} \text{ and } |\{ \}| = 0 \text{ so } \uparrow \notin \text{NTD} \]

Thus, **NTD** is non-trivial

Let \(f \) and \(g \) be indices of functions where \(\text{dom}(f) = \text{dom}(g) \).

\[f \in \text{NTD} \iff |\text{dom}(f)| > 1 \quad \text{By definition} \]

\[\iff |\text{dom}(g)| > 1 \quad \text{As } \text{dom}(f) = \text{dom}(g) \]

\[\iff g \in \text{NTD} \]

This shows **NTD** is undecidable due to Rice’s Theorem -- Weak Form based on domains

3 c.) Consider **NonTrivialRange (NTR)** = \{ f \mid |\text{Range}(f)| > 1 \}. Show that **NTR** \(\leq_m \) **NTD**.

Let \(f \) be an arbitrary index. Define \(\forall x \ Gf(x) = \exists y, t \ [\text{STP}(f,x,t) \& \text{VALUE}(f,y,t) = x] \)

Note this is \(\exists y \ [f(y) = x] \) but there is an issue in writing it this way with \(f \) a procedure

\[f \in \text{NTR} \iff |\text{Range}(f)| > 1 \iff \exists <x_0, x_1>, \ x_0 \neq x_1, \text{ where } x_0 \& x_1 \in \text{Range}(f) \]

\[\Rightarrow Gf(x_0) \downarrow \text{ and } Gf(x_1) \downarrow, \ x_0 \neq x_1 \Rightarrow Gf \in \text{NTD. Thus, } f \in \text{NTR} \Rightarrow Gf \in \text{NTD} \]

\[f \notin \text{NTR} \iff |\text{Range}(f)| \leq 1. \text{ But then either } \forall y f(y) \uparrow \Rightarrow |\text{dom}(Gf)| = 0 \]

Or \(\exists x \forall y f(y) \downarrow \Rightarrow f(y) = x \) and so \(Gf(x) \downarrow \) but \(Gf(z) \uparrow \) if \(z \neq x \Rightarrow |\text{dom}(Gf)| = 1 \)

Thus, \(f \notin \text{NTR} \Rightarrow Gf \notin \text{NTD and so } f \in \text{NTR} \iff Gf \in \text{NTD} \)

3 d.) Show that **NTD** \(\leq_m \) **NTR**.

Let \(f \) be an arbitrary index, Define \(\forall x \ Gf(x) = x \ast \exists t \ [\text{STP}(f,x,t)] = f(x) - f(x) + x \)

Clearly \(Gf(x) = x \iff x \in \text{dom}(f) \) and \(Gf(x) \uparrow \) if \(x \notin \text{dom}(f) \)

Thus, \(\text{Range}(Gf) = \text{dom}(Gf) = \text{dom}(f) \) and so their cardinalities are the same.

And so, \(f \in \text{NTD} \iff Gf \in \text{NTR} \)