COT 6410	Spring 2022
Raw Score	/ 60

Midterm	Name:	KEY	
Grade:			

6 1. In each case below, consider R1 to be Regular, R2 to be finite, and L1 and L2 to be non-regular CFLs. Fill in the three columns with Y or N, indicating what kind of language L can be. No proofs are required. Read ⊆ as "contained in and may equal."
Put Y in all that are possible and N in all that are not.

Definition of L	Regular?	CFL, non-Regular?	Not even a CFL?
$L = L1 \cap L2$	Y	Y	Y
L = L1 - R2	N	Y	N
$L = \Sigma^* - R1$	Y	N	N
L <u>⊆</u> R1	Y	Y	Y

3 2. Choosing from among (D) decidable, (U) undecidable, categorize each of the following decision problems. No proofs are required. L is a language over Σ .

Problem / Language Class	Regular	Context Free	Context Sensitive	Phrase Structured
L contains Σ ?	D	D	D	U
L is infinite ?	D	D	U	U

4 3. Prove that any class of languages, C, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Cut with Regular Sets, denoted by the operator |||, where L ∈ C, R is Regular, L and R are both over the alphabet Σ, and

L||| $\mathbf{R} = \{ x_1 \ x_2 \dots x_k \mid k \ge 1, \ \forall i \ y_i \in \mathbf{R} \ \text{and} \ x_1 \ y_1 \ x_2 y_2 \dots x_k \ y_k \in \mathbf{L} \ \text{where each} \ x_i \in \Sigma^+ \}.$ You may assume substitution $\mathbf{f}(\mathbf{a}) = \{\mathbf{a}, \mathbf{a}'\}$, and homomorphisms $\mathbf{g}(\mathbf{a}) = \mathbf{a}'$ and $\mathbf{h}(\mathbf{a}) = \mathbf{a}, \ \mathbf{h}(\mathbf{a}') = \lambda$. Here $\mathbf{a} \in \Sigma$ and \mathbf{a}' is a new character associated with each such $\mathbf{a} \in \Sigma$. You only need give me the definition of $\mathbf{L} ||| \mathbf{R}$ in an expression that obeys the above closure properties; you do not need to prove or even justify your expression.

$$L|||R = h(f(L) \cap (\Sigma^+ g(R))^+)$$

4 4. Specify True (T) or False (F) for each statement.

Statement	T or F
The Context Sensitive Languages are closed under union	T
The Post Correspondence Problem is undecidable if $ \Sigma = 2$	T
The function $Univ(f,x) = \varphi_f(x)$ is primitive recursive	F
If Halt \leq_m P then P must be RE	F
The RE sets are closed under complement	$oldsymbol{F}$
Myhill-Nerode proves that every regular language has a minimum state DFA	T
If P is solvable then Rice's Theorem cannot apply to P	\overline{T}
The incorrect traces of a Turing Machine's Computations form a CFL	T

4 5. Let $P = \langle \langle x_1, x_2, ..., x_n \rangle$, $\langle y_1, y_2, ..., y_n \rangle \rangle$, $x_i, y_1 \in \Sigma^+$, $1 \le i \le n$, be an arbitrary instance of PCP. We can use PCP's undecidability to show the undecidability of the problem to determine if the language associated with a Context Sensitive Grammar is non-empty. Present a grammar, G, associated with an arbitrary instance of PCP, P, such that $\mathcal{L}(G)$ is non-empty if and only if there is a solution to P. Define $G = (\{S, T\} \cup \Sigma, \{*\}, R, S)$ where R is the set of rules (this is your job):

```
S \rightarrow x_{i} S y_{i}^{R} \mid x_{i} T y_{i}^{R} \qquad 1 \leq i \leq n
a T a \rightarrow *T * \forall a \in \Sigma
a * \rightarrow *\alpha
* a \rightarrow \alpha *
T \rightarrow *
```

- 12 6. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify each answer by showing some minimal quantification of some known recursive predicate.
 - a.) D = $\{ \langle f, x \rangle \mid \phi_f(x) \text{ converges in at most } 10 \text{ steps } \}$

STP(f, x, 10) REC

b.) $B = \{ f \mid \phi_f \text{ is not total } \}$

 $\exists x \ \forall t \ \sim STP(f, x, t)$ NRNC

c.) $C = \{ f \mid domain(\phi_f) \text{ is non-empty } \}$

 $\exists \langle x, t \rangle STP(f, x, t)$ RE

 $d.) A = \{ f \mid |range(\varphi_f)| \leq 1 \}$

 $\forall \langle x, y, t \rangle [STP(f, x, t) \& STP(f, y, t) \Rightarrow VALUE(f, x, t) = VALUE(f, y, t)]$ CO-RE

2 7. Looking back at Question 6, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.

a) ____ b) \underline{X} c) \underline{X} d) \underline{X}

- 8. We wish to prove that, if S and its complement S' are both be non-empty and recursively enumerable, then S is recursive (decidable). There are two approaches. The first is based on the fact that there are algorithms, f_S and f_{S'}, that enumerate S and S', respectively. The second is based on the fact that there are procedures (partial recursive functions), g_S and g_{S'}, whose domains are S and S', respectively.
- 3 a.) Define a characteristic function for S based on the existence of f_S and $f_{S'}$.

$$\chi_{S}(x) = f_{S}(\mu y | f_{S}(y) = x || f_{S}$$

3 **b.**) Define a characteristic function for S based on the existence of g_S and $g_{S'}$.

```
\chi_{S}(\mathbf{x}) = STP(g_{S}, \mathbf{x}, \mu t \mid STP(g_{S}, \mathbf{x}, t) \mid \mid STP(g_{S}, \mathbf{x}, t) \mid)
```

- 6 9. Let sets A be a non-empty recursive (decidable) set and let B be re non-recursive (undecidable). Consider C = { z | z = min(x,y), where x ∈ A and y ∈ B }. For (a)-(c), either show sets A and B and the resulting set C, such that C has the specified property (argue convincingly that it has the correct property) or demonstrate (prove by construction) that this property cannot hold.
 - a. Can C be recursive? Circle Y or N.

$$A = \{ 0 \}$$
 $B = K$

 $C = A = \{0\}$ which is recursive

b. Can \mathbf{C} be re non-recursive? Circle $\underline{\mathbf{Y}}$ or \mathbf{N} .

$$A = \{ 2x \mid x \in \mathcal{N} \}$$
 $B = \{ 2x + 1 \mid x \in K \}$

 $C = A \cup B$ as they are disjoint sets and each element in each set is the minimum of some pair with the other set. The membership problem for K reduces to that of C and vice versa. Thus, C is re, non-recursive

c. Can C be non-re? Circle Y or \underline{N} . You may assume $\mathbf{A} = \mathbf{range}(\mathbf{f_A})$, $\mathbf{B} = \mathbf{range}(\mathbf{f_B})$, for some algorithms $\mathbf{f_A}$, $\mathbf{f_B}$.

$$f_{min(A,B)}(\langle x, y \rangle) = min(f_A(x), f_B(y))$$

The range of $f_{min(A,B)}$ is then the set of minimums of the sets A and B. This shows C is the range of some procedure and so is RE

- 10. Define PseudoFIB (PF) = { $f \mid \text{for some input } x, f(x+2) = f(x+1) + f(x) }.$
- 2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.s and d.) to get a clue as to what this must be.)

$$\exists \langle x, t \rangle [$$
 $STP(f, x+2, t) \& STP(f, x+1, t) \& STP(f, x, t) \&$ $VALUE(f, x+2, t) = VALUE(f, x+2, t) + VALUE(f, x, t)]$

5 b.) Use Rice's Theorem to prove that **PF** is undecidable.

First, PF is non-trivial as $C0 \in PF$ and $C1 \notin PF$ Next, let f and g, be arbitrary function indices such that $\forall x f(x) = g(x)$ $f \in PF \Leftrightarrow \exists x [f(x+2) = f(x) + f(x+1]) \Leftrightarrow$ $\exists x [g(x+2) = gf(x) + g(x+1])$ since $\forall x f(x) = g(x)$ $\Leftrightarrow g \in PF$

By the Strong Form of Rice's Theorem, PF is thus shown to be undecidable

5 c.) Show that $K \leq_m PF$, where $K = \{ f \mid f(f) \downarrow \}$.

Let f be an arbitrary function index

Define
$$\forall x F_f(x) = f(f) - f(f)$$

$$f \in K \Leftrightarrow \forall x F_f(x) = 0 \Rightarrow F_f \in PF$$

$$f \not\in K \Leftrightarrow \forall x F_f(x) \uparrow \Rightarrow F_f \not\in PF$$

Thus $K \leq_m PF$ as was to be shown

1 d.) From a.) through c.) what can you conclude about the complexity of PF (Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

RE-COMPLETE since *PF* is *RE*, $K \leq_m PF$, and *K* is *RE-COMPLETE*