6. In each case below, consider R1 to be Regular, R2 to be finite, and L1 and L2 to be non-regular CFLs. Fill in the three columns with Y or N, indicating what kind of language L can be. No proofs are required. Read \(\subseteq \) as “contained in and may equal.”

<table>
<thead>
<tr>
<th>Definition of L</th>
<th>Regular?</th>
<th>CFL, non-Regular?</th>
<th>Not even a CFL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L = L_1 \cap L_2)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(L = L_1 - R_2)</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>(L = \Sigma^* - R_1)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>(L \subseteq R_1)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

3. Choosing from among (D) decidable, (U) undecidable, categorize each of the following decision problems. No proofs are required. L is a language over \(\Sigma \).

<table>
<thead>
<tr>
<th>Problem / Language Class</th>
<th>Regular</th>
<th>Context Free</th>
<th>Context Sensitive</th>
<th>Phrase Structured</th>
</tr>
</thead>
<tbody>
<tr>
<td>L contains (\Sigma)?</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>U</td>
</tr>
<tr>
<td>(</td>
<td>L</td>
<td>) is infinite?</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

4. Prove that any class of languages, \(C \), closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Cut with Regular Sets, denoted by the operator \(|| \), where \(L \in C \), R is Regular, L and R are both over the alphabet \(\Sigma \), and

\[
L||R = \{ x_1 x_2 \ldots x_k \mid k \geq 1, \forall i y_i \in R \text{ and } x_1 y_1 x_2 y_2 \ldots x_k y_k \in L \text{ where each } x_i \in \Sigma^+ \}
\]

You may assume substitution \(f(a) = \{a, a'\} \), and homomorphisms \(g(a) = a' \) and \(h(a) = a, h(a') = \lambda \). Here \(a \in \Sigma \) and \(a' \) is a new character associated with each such \(a \in \Sigma \).

You only need give me the definition of \(L||R \) in an expression that obeys the above closure properties; you do not need to prove or even justify your expression.

\[
L||R = h(f(L) \cap (\Sigma^* g(R)) +)
\]

4. Specify True (T) or False (F) for each statement.

<table>
<thead>
<tr>
<th>Statement</th>
<th>T or F</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Context Sensitive Languages are closed under union</td>
<td>T</td>
</tr>
<tr>
<td>The Post Correspondence Problem is undecidable if (</td>
<td>\Sigma</td>
</tr>
<tr>
<td>The function (\text{Univ}(f,x) = \varphi(x)) is primitive recursive</td>
<td>F</td>
</tr>
<tr>
<td>If (\text{Halt} \leq_m \text{P}) then (\text{P}) must be RE</td>
<td>F</td>
</tr>
<tr>
<td>The (\text{RE}) sets are closed under complement</td>
<td>F</td>
</tr>
<tr>
<td>Myhill-Nerode proves that every regular language has a minimum state DFA</td>
<td>T</td>
</tr>
<tr>
<td>If (\text{P}) is solvable then Rice’s Theorem cannot apply to (\text{P})</td>
<td>T</td>
</tr>
<tr>
<td>The incorrect traces of a Turing Machine’s Computations form a CFL</td>
<td>T</td>
</tr>
</tbody>
</table>
4 5. Let $P = \langle x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \rangle$, $x_i, y_i \in \Sigma^*$, $1 \leq i \leq n$, be an arbitrary instance of PCP. We can use PCP's undecidability to show the undecidability of the problem to determine if the language associated with a Context Sensitive Grammar is non-empty. Present a grammar, G, associated with an arbitrary instance of PCP, P, such that $\mathcal{L}(G)$ is non-empty if and only if there is a solution to P.

Define $G = (\{S, T\} \cup \Sigma, \{\ast\}, R, S)$ where R is the set of rules (this is your job):

\[
\begin{align*}
S & \rightarrow x_i Sy_i^R \mid x_i Ty_i^R \quad 1 \leq i \leq n \\
T & \rightarrow \ast \quad \forall a \in \Sigma \\
a & \rightarrow \ast \alpha \\
\ast a & \rightarrow \alpha \ast \\
T & \rightarrow \ast
\end{align*}
\]

12 6. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify each answer by showing some minimal quantification of some known recursive predicate.

a.) $D = \{ \langle f, x \rangle \mid \varphi(x) \text{ converges in at most 10 steps} \}$

\[\text{STP}(f, x, 10) \quad \text{REC}\]

b.) $B = \{ f \mid \varphi \text{ is not total} \}$

\[\exists x \ \forall t \ \neg \text{STP}(f, x, t) \quad \text{NRNC}\]

c.) $C = \{ f \mid \text{domain}(\varphi) \text{ is non-empty} \}$

\[\exists <x, t> \text{STP}(f, x, t) \quad \text{RE}\]

d.) $A = \{ f \mid \|\text{range}(\varphi)\| \leq 1 \}$

\[\forall <x, y, t> [\text{STP}(f,x,t) \& \text{STP}(f,y,t) \Rightarrow \text{VALUE}(f,x,t) = \text{VALUE}(f,y,t)] \quad \text{CO-RE}\]

2 7. Looking back at Question 6, which of these are candidates for using Rice’s Theorem to show their unsolvability? Check all for which Rice Theorem might apply.

a) ___ b) X c) X d) X
8. We wish to prove that, if S and its complement S' are both be non-empty and recursively enumerable, then S is recursive (decidable). There are two approaches. The first is based on the fact that there are algorithms, f_S and $f_{S'}$, that enumerate S and S', respectively. The second is based on the fact that there are procedures (partial recursive functions), g_S and $g_{S'}$, whose domains are S and S', respectively.

3 a.) Define a characteristic function for S based on the existence of f_S and $f_{S'}$.

$$\chi_S(x) = f_S(\mu y [f_S(y) = x \| f_{S'}(y) = x]) = x$$

3 b.) Define a characteristic function for S based on the existence of g_S and $g_{S'}$.

$$\chi_S(x) = \text{STP}(g_S, x, \mu t [\text{STP}(g_S, x, t) \| \text{STP}(g_{S'}, x, t)])$$

6 9. Let sets A be a non-empty recursive (decidable) set and let B be re non-recursive (undecidable). Consider $C = \{ z | z = \min(x, y), \text{where } x \in A \text{ and } y \in B \}$.

For (a)-(c), either show sets A and B and the resulting set C, such that C has the specified property (argue convincingly that it has the correct property) or demonstrate (prove by construction) that this property cannot hold.

a. Can C be recursive? Circle Y or N.

$$A = \{ 0 \} \quad B = K$$

$C = A = \{ 0 \}$ which is recursive

b. Can C be re non-recursive? Circle Y or N.

$$A = \{ 2x | x \in \mathbb{N} \} \quad B = \{ 2x + 1 | x \in K \}$$

$C = A \cup B$ as they are disjoint sets and each element in each set is the minimum of some pair with the other set. The membership problem for K reduces to that of C and vice versa. Thus, C is re, non-recursive

c. Can C be non-re? Circle Y or N.

You may assume $A = \text{range}(f_A)$, $B = \text{range}(f_B)$, for some algorithms f_A, f_B.

$$f_{\min(A,B)}(\langle x, y \rangle) = \min(f_A(x), f_B(y))$$

The range of $f_{\min(A,B)}$ is then the set of minimums of the sets A and B. This shows C is the range of some procedure and so is RE
10. Define PseudoFIB (PF) = { f | for some input x, f(x+2) = f(x+1)+f(x) }.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c,s and d.) to get a clue as to what this must be.

\[\exists <x, t> \{ \text{STP}(f, x+2, t) & \text{STP}(f; x+1, t) & \text{STP}(f, x, t) \ \& \ \\
VALUE(f, x+2, t) = VALUE(f, x+2, t) + VALUE(f, x, t) \} \]

5 b.) Use Rice’s Theorem to prove that PF is undecidable.

First, PF is non-trivial as C0 ∉ PF and C1 ∉ PF

Next, let f and g, be arbitrary function indices such that ∀x f(x) = g(x)

\[f \in PF \iff \exists x \{ f(x+2) = f(x)+f(x+1) \} \iff \exists x \{ g(x+2) = g(x)+g(x+1) \} \text{ since } \forall x f(x) = g(x) \]

\[\iff g \in PF \]

By the Strong Form of Rice’s Theorem, PF is thus shown to be undecidable

c.) Show that \(K \leq_m PF \), where \(K = \{ f | f(f) \downarrow \} \).

Let f be an arbitrary function index

Define \(\forall x F_f(x) = f(f) - f(f) \)

\[f \in K \iff \forall x F_f(x) = 0 \Rightarrow F_f \in PF \]

\[f \not\in K \iff \forall x F_f(x) \uparrow \Rightarrow F_f \not\in PF \]

Thus \(K \leq_m PF \) as was to be shown

d.) From a.) through c.) what can you conclude about the complexity of PF (Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

RE-COMPLETE since PF is RE, \(K \leq_m PF \), and K is RE-COMPLETE