COT 6410
Raw Score
\qquad
Grade: \qquad

6 1. In each case below, consider $\mathbf{R} 1$ to be Regular, $\mathbf{R} 2$ to be finite, and $\mathbf{L} 1$ and $\mathbf{L} 2$ to be non-regular CFLs. Fill in the three columns with \mathbf{Y} or \mathbf{N}, indicating what kind of language \mathbf{L} can be. No proofs are required. Read \subseteq as "contained in and may equal."
Put \mathbf{Y} in all that are possible and \mathbf{N} in all that are not.

Definition of \mathbf{L}	Regular?	CFL, non-Regular?	Not even a CFL?
$\mathbf{L}=\mathbf{L} 1 \cap \mathbf{L} 2$	Y	Y	Y
$\mathbf{L}=\mathbf{L} 1-\mathbf{R} 2$	N	Y	N
$\mathbf{L}=\Sigma^{*}-\mathbf{R} 1$	Y	N	N
$\mathbf{L} \subseteq \mathbf{R} 1$	Y	Y	Y

3 2. Choosing from among (D) decidable, (U) undecidable, categorize each of the following decision problems. No proofs are required. \mathbf{L} is a language over $\boldsymbol{\Sigma}$.

Problem / Language Class	Regular	Context Free	Context Sensitive	Phrase Structured
L contains Σ ?	D	D	D	U
$\|L\|$ is infinite ?	D	D	U	U

4 3. Prove that any class of languages, \boldsymbol{C}, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Cut with Regular Sets, denoted by the operator $\|\|$, where $\mathbf{L} \in \boldsymbol{C}, \mathbf{R}$ is Regular, \mathbf{L} and \mathbf{R} are both over the alphabet $\boldsymbol{\Sigma}$, and
$L \| R=\left\{x_{1} \mathbf{x}_{2} \ldots \mathbf{x}_{k} \mid k \geq 1, \forall i y_{i} \in R\right.$ and $x_{1} y_{1} \mathbf{x}_{2} y_{2} \ldots x_{k} y_{k} \in L$ where each $\left.x_{i} \in \Sigma^{+}\right\}$.
You may assume substitution $\mathbf{f}(\mathbf{a})=\left\{\mathbf{a}, \mathbf{a}^{\prime}\right\}$, and homomorphisms $\mathbf{g}(\mathbf{a})=\mathbf{a}^{\prime}$ and $\mathbf{h}(\mathbf{a})=\mathbf{a}, \mathbf{h}\left(\mathbf{a}^{\prime}\right)=\boldsymbol{\lambda}$. Here $\mathbf{a} \in \boldsymbol{\Sigma}$ and \mathbf{a}^{\prime} is a new character associated with each such $\mathbf{a} \in \boldsymbol{\Sigma}$.
You only need give me the definition of $\mathbf{L} \mid \| \mathbf{R}$ in an expression that obeys the above closure properties; you do not need to prove or even justify your expression.
$\mathbf{L}\left\|\| \mathbf{R}=\underline{h(f(L)} \cap\left(\Sigma^{+} g(R)\right)^{+}\right)$
4 4. Specify True (T) or False (F) for each statement.

Statement	T or \mathbf{F}
The Context Sensitive Languages are closed under union	\boldsymbol{T}
The Post Correspondence Problem is undecidable if $\|\boldsymbol{\Sigma}\|=\mathbf{2}$	\boldsymbol{T}
The function Univ(f,x) $=\varphi \mathrm{\varphi}(\mathbf{x})$ is primitive recursive	\boldsymbol{F}
If Halt $\leq_{\mathrm{m}} \mathbf{P}$ then \mathbf{P} must be RE	\boldsymbol{F}
The RE sets are closed under complement	\boldsymbol{F}
Myhill-Nerode proves that every regular language has a minimum state DFA	\boldsymbol{T}
If \mathbf{P} is solvable then Rice's Theorem cannot apply to P	\boldsymbol{T}
The incorrect traces of a Turing Machine's Computations form a CFL	\boldsymbol{T}

4 5. Let $\mathbf{P}=\left\langle<\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right\rangle,\left\langle\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{\mathbf{2}}, \ldots, \mathbf{y}_{\mathbf{n}} \gg, \mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{1}} \in \boldsymbol{\Sigma}^{+}, \mathbf{1} \leq \mathbf{i} \leq \mathbf{n}\right.$, be an arbitrary instance of $\mathbf{P C P}$. We can use PCP's undecidability to show the undecidability of the problem to determine if the language associated with a Context Sensitive Grammar is non-empty. Present a grammar, G, associated with an arbitrary instance of PCP, \mathbf{P}, such that $\mathcal{L}(\mathbf{G})$ is non-empty if and only if there is a solution to \mathbf{P}.
Define $\mathbf{G}=(\{\mathbf{S}, \mathbf{T}\} \cup \Sigma,\{*\}, \mathbf{R}, \mathbf{S})$ where \mathbf{R} is the set of rules (this is your job):
$\begin{array}{llll}S & \rightarrow & x_{i} S y_{i}^{R} \mid x_{i} T y_{i}^{R} & 1 \leq i \leq n \\ a T a & \rightarrow & * T^{*} & \forall a \in \Sigma \\ a * & \rightarrow & * \alpha & \\ * a & \rightarrow & \alpha^{*} & \\ T & \rightarrow & * & \end{array}$

12 6. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify each answer by showing some minimal quantification of some known recursive predicate.
a.) $D=\{\langle f, x\rangle \mid \varphi f(x)$ converges in at most 10 steps $\}$
$\operatorname{STP}(f, x, 10)$
REC
b.) $B=\{\mathbf{f} \mid \varphi \mathrm{f}$ is not total $\}$
$\exists x \forall t \sim \operatorname{STP}(f, x, t)$
NRNC
c.) $C=\left\{f \mid\right.$ domain $\left(\varphi_{f}\right)$ is non-empty $\}$
\square
$\exists<x, t>\operatorname{STP}(f, x, t)$
$\boldsymbol{R E}$
d.) $\mathbf{A}=\left\{\mathbf{f}|\quad| \operatorname{range}\left(\varphi_{f}\right) \mid \leq 1\right\}$
$\forall<x, y, t>[\operatorname{STP}(f, x, t) \& S T P(f, y, t) \Rightarrow \operatorname{VALUE}(f, x, t)=\operatorname{VALUE}(f, y, t)]$ \qquad

2 7. Looking back at Question 6, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.
a)
b) \underline{X}
c) \underline{X}
d) \underline{X}
8. We wish to prove that, if \mathbf{S} and its complement \mathbf{S}^{\prime} are both be non-empty and recursively enumerable, then S is recursive (decidable). There are two approaches. The first is based on the fact that there are algorithms, $\mathbf{f}_{\mathbf{S}}$ and $\mathbf{f}_{\mathbf{s}}$, that enumerate \mathbf{S} and \mathbf{S}^{\prime}, respectively. The second is based on the fact that there are procedures (partial recursive functions), $\mathbf{g}_{\mathbf{s}}$ and $\mathbf{g}_{\mathbf{s}}$, whose domains are \mathbf{S} and \mathbf{S}^{\prime}, respectively.

3 a.) Define a characteristic function for \mathbf{S} based on the existence of $\mathbf{f}_{\mathbf{S}}$ and $\mathbf{f}_{\mathbf{S}}$,

$$
\chi_{\mathrm{s}}(\mathbf{x})=\underline{f_{s}}\left(\mu y / f_{s}(y)=x \| f_{s^{\prime}}(y)=x /\right)=x
$$

3 b.) Define a characteristic function for \mathbf{S} based on the existence of $\mathbf{g}_{\mathbf{S}}$ and $\mathbf{g}_{\mathbf{S}}$.

```
\chis(x)= STP(g
```

6 9. Let sets \mathbf{A} be a non-empty recursive (decidable) set and let \mathbf{B} be re non-recursive (undecidable).
Consider $\mathbf{C}=\{\mathbf{z} \mid \mathbf{z}=\boldsymbol{\operatorname { m i n }}(\mathbf{x}, \mathbf{y})$, where $\mathbf{x} \in \mathbf{A}$ and $\mathbf{y} \in \mathbf{B}\}$.
For (a)-(c), either show sets \mathbf{A} and \mathbf{B} and the resulting set \mathbf{C}, such that \mathbf{C} has the specified property (argue convincingly that it has the correct property) or demonstrate (prove by construction) that this property cannot hold.
a. Can \mathbf{C} be recursive? Circle \underline{Y} or \mathbf{N}.
$A=\{0\} \quad B=K$
$C=A=\{0\}$ which is recursive
b. Can \mathbf{C} be re non-recursive?

Circle \underline{Y} or \mathbf{N}.
$A=\{2 x \mid x \in \mathbb{N}\} \quad B=\{2 x+1 \mid x \in K\}$
$C=A \cup B$ as they are disjoint sets and each element in each set is the minimum of some pair with the other set. The membership problem for K reduces to that of C and vice versa.
Thus, C is re, non-recursive
c. Can \mathbf{C} be non-re? Circle \mathbf{Y} or \underline{N}.

You may assume $\mathbf{A}=\operatorname{range}\left(\mathbf{f}_{A}\right), \mathbf{B}=\operatorname{range}\left(\mathbf{f}_{\mathbf{B}}\right)$, for some algorithms $\mathbf{f}_{\mathbf{A}}, \mathbf{f}_{\mathbf{B}}$.

$$
f_{\min (A, B)}(<x, y>)=\min \left(f_{A}(x), f_{B}(y)\right)
$$

The range of $f_{\min (A, B)}$ is then the set of minimums of the sets A and B.
This shows C is the range of some procedure and so is $R E$
10. Define PseudoFIB $(\mathbf{P F})=\{\mathbf{f} \mid$ for some input $\mathbf{x}, \mathbf{f}(\mathbf{x}+\mathbf{2})=\mathbf{f}(\mathbf{x}+\mathbf{1})+\mathbf{f}(\mathbf{x})\}$.

2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.s and d.) to get a clue as to what this must be.)

$$
\begin{aligned}
\exists<x, t> & {[\operatorname{STP}(f, x+2, t) \& \operatorname{STP}(f, x+1, t) \& \operatorname{STP}(f, x, t) \&} \\
& \operatorname{VALUE}(f, x+2, t)=\operatorname{VALUE}(f, x+2, t)+\operatorname{VALUE}(f, x, t)]
\end{aligned}
$$

5 b.) Use Rice's Theorem to prove that $\mathbf{P F}$ is undecidable.
First, PF is non-trivial as C0 $\in P F$ and $C 1 \notin P F$
Next, let f and g, be arbitrary function indices such that $\forall x f(x)=g(x)$
$f \in P F \Leftrightarrow \exists x[f(x+2)=f(x)+f(x+1]) \Leftrightarrow$

$$
\begin{aligned}
& \exists x[g(x+2)=g f(x)+g(x+1]) \text { since } \forall x f(x)=g(x) \\
\Leftrightarrow & g \in P F
\end{aligned}
$$

By the Strong Form of Rice's Theorem, PF is thus shown to be undecidable
c.) Show that $\mathbf{K} \leq_{\mathrm{m}} \mathbf{P F}$, where $\mathbf{K}=\{\mathbf{f} \mid \mathbf{f}(\mathbf{f}) \downarrow\}$.

Let f be an arbitrary function index
Define $\forall x F_{f}(x)=f(f)-f(f)$
$f \in K \Leftrightarrow \underline{\forall x} F_{f}(x)=0 \Rightarrow F_{f} \in P F$
$f \notin K \Leftrightarrow \underline{\forall x} F_{f}(x) \uparrow \Rightarrow F_{f} \notin P F$
Thus $K \leq_{m}$ PF as was to be shown

1 d.) From a.) through \mathbf{c}.) what can you conclude about the complexity of PF (Recursive, RE, RECOMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

RE-COMPLETE since PF is $R E, K \leq_{m} P F$, and K is RE-COMPLETE

