COT 6410	Spring 2020	Midterm#1	Name:	KEY
Raw Score	<u>/ 60</u>	Grade:		

6 1. In each case below, consider R1 to be Regular, R2 to be finite, and L1 and L2 to be non-regular CFLs. Fill in the three columns with Y or N, indicating what kind of language L can be. No proofs are required. Read ⊆ as "contained in and may equal." Put Y in all that are possible and N in all that are not.

Definition of L	Regular?	CFL, non-Regular?	Not even a CFL?
$\mathbf{L} = \mathbf{L}1 / \mathbf{L}2$	Y	Y	Y
$\mathbf{L} = \mathbf{L}1 - \mathbf{R}1$	Y	Y	N
$\mathbf{L} = \mathbf{\Sigma}^* - \mathbf{L}1$	N	Y	Y
$L \subseteq R2$	Y	N	N

3 2. Choosing from among (D) decidable, (U) undecidable, categorize each of the following decision problems. No proofs are required. L is a language over Σ ; w is a word in Σ^*

Problem / Language Class	Regular	Context Free	Context Sensitive	Phrase Structured
$L = \emptyset$?	D	D	U	U
L is Σ* ?	D	U	U	U

4 3. Prove that any class of languages, *C*, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Double Interior Retention with Regular Sets, denoted by the operator ||, where L ∈ C, R is Regular, L and R are both over the alphabet Σ, and

 $L || \mathbf{R} = \{ \mathbf{vx} | \mathbf{v,x} \in \mathbf{R} \text{ and } \exists \mathbf{u,w} \in \Sigma^+ \text{ such that } \mathbf{uvwx} \in L \}.$

You may assume substitution $f(a) = \{a, a'\}$, and homomorphisms g(a) = a' and

 $h(a) = a, h(a') = \lambda$. Here $a \in \Sigma$ and a' is a new character associated with each such $a \in \Sigma$. You only need give me the definition of L||R in an expression that obeys the above closure properties; you do not need to prove or even justify your expression.

 $L||R = \underline{h(f(L) \cap g(\Sigma^{\dagger}) \ R \ g(\Sigma^{\dagger}) \ R}$

4 4. Specify True (T) or False (F) for each statement.

Statement	T or F
An algorithm exists to determine if a Phrase Structured Grammar generates λ	F
If P is Unsolvable then Rice's Theorem can always show this	F
The Context Sensitive Languages are closed under complement	Т
If $\mathbf{P} \leq_{m} \mathbf{Halt}$ then \mathbf{P} must be RE	T
The RE sets are closed under intersection	Т
The correct traces of a Turing Machine's Computations form a Context Free Language	F
The Post Correspondence Problem is decidable if $ \Sigma = 1$	T
There is an algorithm to determine if L is finite, for L a Context Sensitive Language	

Let P = <<x₁,x₂,...,x_n>, <y₁,y₂,...,y_n>>, x_i,y₁ ∈ Σ⁺, 1≤i≤n, be an arbitrary instance of PCP. We can use PCP's undecidability to show the undecidability of the problem to determine if a Context Free Grammar is ambiguous. Present grammars, G1 and G2, associated with an arbitrary instance of PCP, P, such that L(G1) ∩ L(G2) is non-empty if and only if there is a solution to P. Define G1 = ({X}, Σ ∪ { [i] | 1 ≤ i ≤ n }, R1, X), G2 = ({Y}, Σ ∪ { [i] | 1 ≤ i ≤ n }, R1, Y), where R1 and R2 are the sets of rules (this is your job):

X	$\rightarrow x_i X[i] \mid x_i[i]$	1 ≤i ≤n
Y	$\rightarrow y_i Y[i] \mid y_i[i]$	1 ≤i ≤n

12 6. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

a.) A = { f | range(φ_f) has no values greater than 10 }

 $\forall \langle x, t \rangle [STP(f, x, t) \Rightarrow VALUE(f, x, t) \leq 10]$ CoRE

b.) B = { <f, x> | φ_f converges on every value (input) greater than or equal to x}

 $\forall y \exists t [y \ge x \Rightarrow STP(f, y, t)]$ NRNC

c.) C = { f | φ_f converges for at least one value (input) of x in at most x steps }

 $\exists x [STP(f, x, x)] RE$

d.) D = { f | if $\varphi_f(f)$ converges it takes more than f steps to do so }

REC \sim STP(f, f, f)

2 7. Looking back at Question 6, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.

a) <u>X</u> b) <u>X</u> c) <u>d</u>

- 8. Show that a set S is an infinite decidable (solvable/recursive) set if and only if it can be described as the range of a monotonically increasing algorithm. I will start the proof.
- 3 a.) Let S be an infinite recursive set. As S is decidable, it has a characteristic function χ s where $\chi_S(\mathbf{x}) = 1$, when $\mathbf{x} \in S$, and $\chi_S(\mathbf{x}) = 0$, otherwise. Using χ s as a basis, we wish to define a monotonically increasing algorithm **f**s whose range is S. Note that, since S is non-empty, it has a smallest element and, since it is infinite, it has no largest element. I have started the proof using primitive recursion (induction). You must complete it by writing in the formula to compute $\mathbf{f}_S(\mathbf{y}+1)$ given we know the value of $\mathbf{f}_S(\mathbf{y})$.

Let $x \in S \Leftrightarrow \chi_S(x)$ // list the smallest element Define $f_S(0) = \mu x \chi_S(x)$ // list the next item in monotonically increasing order. That's your job!! $f_S(y+1) = \mu x [\chi_S(x) \&\& x > f_S(y)]$

3 b.) Let S be the range of some monotonically increasing enumerating algorithm fs. Show that S must be an infinite recursive set. First S is infinite since $\forall x \text{ fs}(x+1) > \text{ fs}(x)$. You must now present a characteristic function χ s that takes advantage of the infinite nature of S and the fact that fs is monotonically increasing and so enumerates any item x in some known bounded amount of time.

 $\chi_{\rm S}({\bf x}) = \underline{\exists y \le x [f_{\rm S}(y) = x]}$

- 6 9. Let sets A be a non-empty recursive (decidable) set and let B be re non-recursive (undecidable). Consider $C = \{ z \mid z = y^x, where x \in A \text{ and } y \in B \}$. Note: Here, we define 0^0 to be 1 (yeah, I know that's a point of debate in Mathematics, but not in this question). For (a)-(c), either show sets A and B and the resulting set C, such that C has the specified property (argue convincingly that it has the correct property) or demonstrate (prove by construction) that this property cannot hold.
 - **a**. Can **C** be recursive? $A = \{0\}; B = HALT; C = \{x^0 \mid x \in HALT\} = \{1\}, which is recursive$
 - **b.** Can **C** be re non-recursive? Circle **Y** or **N**. $A = \{1\}; B = HALT; C = \{x^1 \mid x \in HALT\} = HALT, which is re, non-recursive$
 - **c**. Can **C** be non-re?

Circle Y or N.

Let Range $(f_A) = A$; Range $(f_B) = B$ Define $f_C(x, y) = f_B(x) \wedge f_C(y) = \{x^y \mid x \in A, y \in B\} = C$ But then C is enumerated by f_C and hence is re.

- 10. Define CounterID (CI) = (f | for all input x, $f(x) \downarrow \& f(x) \neq x$ }.
- 2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

 $\forall x \exists t [STP(f, x, t) \&\& VALUE(f, x, t) \neq x \}$

5 b.) Use Rice's Theorem to prove that CI is undecidable.

Non-Trivial as: $S \in CI$ and $C0 \notin CI$ Let f, g be arbitrary indices of procedures such that $\forall x f(x) = g(x)$ $f \in CI \iff \forall x f(x) \neq \&\& f(x) \neq x$ $\Leftrightarrow \forall x g(x) \neq \&\& g(x) \neq x$ since $\forall x f(x) = g(x)$

 $\Leftrightarrow \quad g \in CI$

Thus, using the Strong Form of Rice's we have that CI is undecidable.

5 c.) Show that TOTAL $\leq_m CI$, where TOTAL = { f | $\forall x f(x) \downarrow$ }.

Let f be an arbitrary index of a procedure

Define $\forall x G_f(x) = f(x) - f(x) + x + 1$

 $f \in TOTAL \quad \Leftrightarrow \quad \forall x f(x) \checkmark$ $\Leftrightarrow \quad \forall x G_f(x) = x+1$ $\Rightarrow \quad G_f \in CI$ $f \notin TOTAL \quad \Leftrightarrow \quad \exists x f(x) \uparrow$ $\Rightarrow \quad G_f \notin CI$

1 d.) From a.) through c.) what can you conclude about the complexity of CI (Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?

NON-RE/NON-CO-RE