COT 6410	Spring 2019	Midterm#1	Name:	KEY	
Raw Score	/ 63	Grade:	_		

6 1. In each case below, consider R1 and R2 to be Regular and L1 and L2 to be non-regular CFLs. Fill in the three columns with Y or N, indicating what kind of language L can be. No proofs are required. Read ⊇ as "contains and may equal."

Put Y in all that are possible and N in all that are not.

Definition of L	Regular?	CFL, non-Regular?	Not even a CFL?
L = L1 / R1	Y	Y	N
$\mathbf{L} = \mathbf{R}1 - \mathbf{L}1$	Y	Y	Y
$L = R1 \cap L1$	Y	Y	N
$L \supseteq R1$	Y	Y	Y

3 2. Choosing from among (D) decidable, (U) undecidable, categorize each of the following decision problems. No proofs are required. L is a language over Σ ; w is a word in Σ^*

Problem / Language Class	Regular	Context Free	Context Sensitive	Phrase Structured
w ∈ L ?	D	D	D	U
L is infinite ?	D	D	U	U

4 3. Prove that any class of languages, C, closed under union, concatenation, intersection with regular languages, homomorphism and substitution (e.g., the Context-Free Languages) is closed under Double Interior Loss with Regular Sets, denoted by the operator ||, where L ∈ C, R is Regular, L and R are both over the alphabet Σ, and

 $L || R = \{ uwy | \exists v, x \in R, such that uvwxy \in L \}.$

You may assume substitution $f(a) = \{a, a'\}$, and homomorphisms g(a) = a' and

 $h(a) = a, h(a') = \lambda$. Here $a \in \Sigma$ and a' is a new character associated with each such $a \in \Sigma$. You only need give me the definition of L||R in an expression that obeys the above closure properties; you do not need to prove or even justify your expression.

 $L||R = h(f(L) \cap \Sigma^* g(R) \Sigma^* g(R) \Sigma^*)$

4 4. Specify True (T) or False (F) for each statement.

Statement	T or F
Rice's Theorem demonstrates the undecidability of the Halting Problem	F
The Context Free Languages are closed under intersection	F
The Ambiguity problem for Context Free Languages is undecidable	T
The Quotient of two Context Free Languages is Context Sensitive	F
An algorithm exists to determine if a Context Free Language is Σ^*	F
Every RE set can be generated by a Phrase Structured Grammar	T
The set difference of two Context Free Languages is Context Sensitive	T
There is an algorithm to determine if $\mathbf{L} = \emptyset$, for \mathbf{L} a Context Sensitive Language	F

4 5. Let P = <<x₁,x₂,...,x_n>, <y₁,y₂,...,y_n>>, x_i,y₁ ∈ Σ⁺, 1≤i≤n , be an arbitrary instance of PCP. We can use PCP's undecidability to show the undecidability of the problem to determine if a Context Free Grammar is ambiguous. Present the grammar, G, associated with an arbitrary instance of PCP, P, such that L(G) is ambiguous if and only if there is a solution to P.

Define $G = (\{ S, X, Y \}, \Sigma \cup \{ [i] \mid 1 \le i \le n \}, S, R)$, where R is the set of rules:

 $S \rightarrow X \mid Y$ $X \rightarrow x_i X [i] \mid X \rightarrow x_i [i] \qquad 1 \le i \le n$ $Y \rightarrow y_i Y [i] \mid Y \rightarrow y_i [i] \qquad 1 \le i \le n$

12 6. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NRNC) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.

a.) { f domain(f) = range(f) }	NRNC	
Justification: $\forall \langle x, t \rangle \exists \langle y, s \rangle [STP(f, x, t) \Leftrightarrow (STP(f, y, s) \&\& V_{2})$	4LUE(f, y, s) = x)	
b.) $\{ f(x) = x \}$	RE	
Justification: $\exists t \mid STP(f, x, t) \&\& VALUE(f, x, t) = x) $		
c.) { f \mid f(x) converges in x steps for at least one value of x }	RE	
Justification: $\exists x \ [\ STP \ (f, x, x) \]$		
d.) { f whenever f converges, $f(x) = x$ }	coRE	
Justification: $\forall \langle x, t \rangle [STP(f, x, t) \Rightarrow (VALUE(f, x, t) = x)]$		

2 7. Looking back at Question 6, which of these are candidates for using Rice's Theorem to show their unsolvability? Check all for which Rice Theorem might apply.

a) <u>X</u> b) <u>X</u> c) <u>d) X</u>

COT 6410

6 8. Let S be an arbitrary, non-empty re/semi-decidable set. One definition is that S is the range of some total recursive f_s . Using f_s , show that S is the domain of some partial recursive function g_s . Here the function g_s that you define based on the existence of f_s semi-decides S.

 $g_{S}(x) = \exists y [f_{S}(y) = x]$

Let S be an arbitrary, non-empty re/semi-decidable set. One definition is that S is the domain of some partial recursive function g_S . Using g_S and the fact that S is non-empty (you may assume c is some element guaranteed to be in S), show that S is the range of some total recursive f_S . Here the function f_S that you define based on the existence of g_S enumerates the elements of S. Hint: Each element of S is enumerated a countably infinite number of times by your function f_S .

 $f_{S}(\langle x,t \rangle) = x * STP(g_{s}, x, t) + c * (1-STP(g_{s}, x, t))$

- 6 9. Show example sets A and B, where A is non-empty and recursive, and B is re non-recursive and
 - a.) $Max(A,B) = \{ z \mid z = max(x,y) \text{ where } x \in A \text{ and } y \in B \}$ is recursive

 $A = \mathcal{K}, B = K, Max(A,B) = \mathcal{K} - \{x \mid x < \text{least value in } K\} = \{x \mid x \ge \text{least value in } K\}$

b.) $Max(A,B) = \{ z \mid z = max(x,y) \text{ where } x \in A \text{ and } y \in B \}$ is renon-recursive

 $A = \{0\}, B = K, Max(A,B) = K$

Hint: Consider $\mathbf{B} = \mathbf{K} = \{ \mathbf{f} | \varphi_{\mathbf{f}}(\mathbf{f}) \downarrow \}$

Note: You must specify the results of Max(A,B) for each case above.

- 10. Define SuccessorLike (SL) = (\mathbf{f} | for some input \mathbf{x} , $\mathbf{f}(\mathbf{x}) = \mathbf{x}+1$ }.
- 2 a.) Show some minimal quantification of some known recursive predicate that provides an upper bound for the complexity of this set. (Hint: Look at c.) and d.) to get a clue as to what this must be.)

 $\exists < x, t \ge [STP(f, x, t) \&\& (VALUE(f, x, t) = x+1)]$

5 b.) Use Rice's Theorem to prove that SL is undecidable.

 $S(x) = x+1 \in SL \quad ; \quad I(x) = x \notin SL \qquad // SL \text{ is non-trivial}$ Let f and g be two arbitrary function indices such that $\forall x [f(x) = g(x)].$ $f \in SL \Leftrightarrow \exists x f(x) = x+1 \Rightarrow \text{for some } x_0, \quad f(x_0) = x_0+1 \Rightarrow g(x_0) = x_0+1 \Rightarrow \exists x g(x) = x+1 \Rightarrow g \in SL$ $f \notin SL \Leftrightarrow \text{for no } x \text{ does } f(x) = x+1 \Leftrightarrow \text{for no } x \text{ does } g(x) = x+1 \Leftrightarrow g \notin SL // Can \text{ just do this one}$

4 c.) Show that $K \leq_m SL$, where $K = \{ f | f(f) \downarrow \}$.

Let f be an arbitrary function index. Define $\forall x F_f(x) = f(f) - f(f) + x + 1$ $f \in K \Leftrightarrow f(f) \checkmark \Leftrightarrow \forall x F_f(x) = x + 1 \Rightarrow F_f \in SL$ $f \notin K \Leftrightarrow f(f) \uparrow \Leftrightarrow \forall x F_f(x) \uparrow \Rightarrow F_f \notin SL$

4 d.) Show that $SL \leq_m K$.

Let f be an arbitrary function index. Define $\forall y \ F_f(y) = \exists \langle x,t \rangle [\ STP(f, x, t) \&\& (VALUE(f, x, t) = x+1)]$ $f \in SL \Leftrightarrow \exists \langle x,t \rangle [\ STP(f, x, t) \&\& (VALUE(f, x, t) = x+1)] \Leftrightarrow \forall y \ F_f(y) \checkmark \Rightarrow F_f \in K$ $f \notin SL \Leftrightarrow \neg \exists \langle x,t \rangle [\ STP(f, x, t) \&\& (VALUE(f, x, t) = x+1)] \Leftrightarrow \forall y \ F_f(y) \uparrow \Rightarrow F_f \notin K$

1 e.) From a.) through d.) what can you conclude about the complexity of SL (Recursive, RE, RE-COMPLETE, CO-RE, CO-RE-COMPLETE, NON-RE/NON-CO-RE)?
RE-COMPLETE