## Assign#5 Key

Spring 2023

Consider the SAT instance: (x1 ∨ x3) & (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5) & (¬x1)

1. Recast this as an instance of 3SAT.

```
ANS:
(x1 ∨ x3 ∨ x3) & (¬x1 ∨ ¬x2 ∨ x6) & (¬x3 ∨ ¬x4 ∨ x7) & (¬x5 ∨ ¬x6 ∨ ¬ x7) & (¬x1 ∨ ¬x1 ∨ ¬x1)
```

```
ANS:

c1 = (x1 ∨ x3 ∨ x3)

c2 = (¬x1 ∨ ¬x2 ∨ x6)

c3 = (¬x3 ∨ ¬x4 ∨ x7)

c4 = (¬x5 ∨ ¬x6 ∨ ¬x7)

c5 = (¬x1 ∨ ¬x1 ∨ ¬x1)
```

One of many simple solutions is ¬x1, x2, x3, x4, ¬x5, x6, x7

2. Construct the SubsetSum instance equivalent to this and state what rows must be chosen. (x1 V x3 V x3) & (¬x1 V ¬x2 V x6) & (¬x3 V ¬x4 V x7) & (¬x5 V ¬x6 V ¬ x7) & (¬x1 V ¬x1 V ¬x1)

|      | x1 | x2 | x3 | x4 | x5 | x6 | x7 | C1 | C2 | C3 | C4 | C5 |
|------|----|----|----|----|----|----|----|----|----|----|----|----|
| x1   | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| ~x1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 1  |
| x2   | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| ~x2  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  |
| x3   | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| ~x3  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| x4   | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| ~x4  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| x5   | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| ~x5  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| x6   | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0  |
| ~x6  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | 0  |
| x7   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 0  |
| ~x7  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 0  |
| C1   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| C1′  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| C2   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  |
| C2'  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  |
| C3   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| C3 ' | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| C4   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| C4'  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| C5   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| C5′  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
|      | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 3  | 3  | 3  | 3  | 3  |

3. Recast the SubsetSum instance in Part 2 as a Partition instance (really easy). You do not need to show the Partitioning into equal subsets but you should understand how it is done.

Ans: G = 11111133333 sum = 22222245553 2 \* sum - G = 33333357773 sum + G = 33333378886 sum is the sum of all rows.Note: If you use 2 in X3/C1 and a 3 in -X1/C5 then sum is 22222255555 and so 2 \* sum - G = 33333377777sum + G = 333333888888 4. Recast the original SAT as a 0-1 Integer Linear Programming instance:

```
(x1 \lor x3) \& (\neg x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5) \& (\neg x1)
```

ANS:

```
Assume 0 \le x1, x2, x3, x4, x5 \le 1

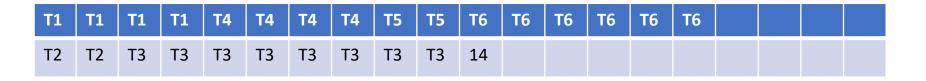
x1 + x3 \ge 1

(1-x1) + (1-x2) + (1-x3) + (1-x4) + (1-x5) \ge 1

(1-x1) \ge 1 (or x1 = 0)

We can choose: x1 = 0, x2 = 1, x3 = 1, x4 = 1, x5 = 1
```

5. Consider the following set of independent tasks with associated task times:


## (T1,4), (T2,2), (T3,8), (T4,4), (T5,2), (T6,6), (T7,1)

Fill in the schedules for these tasks under the associated strategies below.

Greedy using the list order above:

Greedy using a reordering of the list so that longest-running tasks appear earliest in the list:

## Greedy then sorted high to low



(T1,4), (T2,2), (T3,8), (T4,4), (T5,2), (T6,6), (T7,1)

| Т3 | Т4 | Т4 | Т4 | Т4 | Т5 | Т5 |  |  |  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--|--|--|
| Т6 | Т6 | Т6 | Т6 | Т6 | Т6 | T1 | T1 | T1 | T1 | Т2 | T2 | T7 |    |  |  |  |

(T3,8), (T6,6), (T1,4), (T4,4), (T2,2), (T5,2), (T7,1)