Assignment#4 Key

1. Define PredicateLike(PL) = $\{f \mid for each x, f(x) either diverges or evaluates to 0 or 1 \}.$

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of PL.

```
\forall \langle x,t. (STP(f, x, t) \Rightarrow (VALUE(f, x, t) = 0) \mid VALUE(f, x, t) = 1))
```

b.) Use Rice's Theorem to prove that PL is undecidable. Be Complete.

```
PL is non-trivial as CO(x) = 0 \in PL and S(x) = x+1 \notin PL
```

Let f,g be two arbitrary indices of procedures such that $\forall x f(x) = g(x)$

```
f \in PL \iff \forall x.(f(x) \uparrow | f(x) = 0 | f(x) = 1)

\iff \forall x.(g(x) \uparrow | g(x) = 0 | g(x) = 1) since \forall xf(x) = g(x)

\iff g \in PL
```

1. Define PredicateLike(PL) = $\{f \mid for each x, f(x) either diverges or evaluates to 0 or 1 \}.$

c.) Show that Diverge = $\{ <f,x > | f(x) \uparrow \}$ is many-one reducible to PL.

Let f be an arbitrary index and input value.

d.) Show that PL is many-one reducible to Diverge = $\{ <f,x > | f(x) \uparrow \}$.

Let f be an arbitrary index.

From f, define $\forall x \ F_f(x) = \exists y [f(y) \neq 0 \ \& \ f(y) \neq 1]$ $f \in PL \Rightarrow \forall x (f(x) \uparrow | f(x) = 0 | f(x) = 1) \Rightarrow \forall x \ F_f(x) \uparrow \Rightarrow F_f \in Diverge$ $f \notin PL \Rightarrow \exists x (f(x) \downarrow \& f(x) \neq 0 \& f(x) \neq 1) \Rightarrow \exists x \ F_f(x) \downarrow \Rightarrow F_f \notin Diverge$ $PL \leq m \ Diverge$

- 2. Define IsPredicate(IP) = { f | for each x, f(x) evaluates to 0 or 1 }.
- a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of IP

```
\forall x \exists t [STP(f, x,t) & (VALUE(f, x,t) = 0 | VALUE(f, x,t) = 1)]
```

b.) Use Rice's Theorem to prove that IP is undecidable. Be Complete.

```
IP is non-trivial as C_0(x) = 0 \in IP and S(x) = x+1 \notin IP
```

Let f, g be two arbitrary indices of procedures such that $\forall x f(x) = g(x)_{\circ}$

$$f \in IP \iff \forall x, f(x) = 1 \mid f(x) = 0$$

 $\iff \forall x, g(x) = 1 \mid g(x) = 0$ since $\forall x f(x) = g(x)$
 $\iff g \in IP$

2. Define IsPredicate(IP) = { f | $\forall x$, f(x) evaluates to 0 or 1 }.

c.) Show that TOTAL = $\{f \mid \forall x f(x) \downarrow \}$ is many-one reducible to IP.

Let f be an arbitrary index and input value.

From f, define
$$F_f(x) = f(x) - f(x)$$
.
 $f \in TOTAL \Rightarrow \forall x, F_f(x) = 0 \Rightarrow F_f \in IP$
 $f \notin TOTAL \Rightarrow \exists x, F_f(x) \uparrow \Rightarrow F_f \notin IP$
 $TOTAL \leq_m IP$

d.) Show that IP is many-one reducible to TOTAL = $\{f \mid \forall x f(x) \downarrow \}$.

Let f be an arbitrary index.

From f, define $\forall x$, $F_f(x) = \exists y [f(x) = 0 \mid f(x) = 1)$ $f \in IP \Rightarrow \forall x$, $F_f(x) \downarrow \Rightarrow F_f \in TOTAL$ $f \notin IP \Rightarrow \exists x$, $F_f(x) \uparrow \Rightarrow F_f \notin TOTAL$