Assignment\#3 Key

1.Consider the language $L=\left\{a^{n} b^{s} c^{t} \mid s<n\right.$ and $\left.t<s\right\}$. Using the Pumping Lemma for CFLs, show L is not a Context-Free Language.

- Using the Pumping Lemma for CFLs, show Lis not a Context-Free Language.
- Assume Lis a CFL
- Let $\mathrm{N}>0$ be from PL
- Chose string $a^{N+2} b^{N+1} c^{N}$
- PL breaks into uvwxz, $|v w x| \leq N$ and $|v x|>0$ and says $\forall i \geq 0 u v^{i} w x^{i z} \in L$
- Case 1:. vx contains at least one c. Set $\mathrm{i}=3$, then we at least $\mathrm{N}+2 \mathrm{c}$'s and only $\mathrm{N}+2$ a's and so string is not in L .
- Case 2: vx contains no c's. Set $\mathrm{i}=0$, then we still have N c's but one or both of the a's or b's have been reduced and yet $\mathrm{N}+2$ and $\mathrm{N}+1$ are as small as they can be, so the new string is not in L .
- These cases cover all possibilities and so L is not a CFL.

2. Consider some language L. For each of the following cases, write in one of (i) through (vi), to indicate what you can say conclusively about L's complexity, where
(i) L is definitely regular
(ii) L is context-free, possibly not regular, but then again it might be regular
(iii) L is context-free, and definitely not regular
(iv) L might not even be context-free, but then again it might even be regular
(v) L is definitely not regular, and it may or may not be context-free
(vi) L is definitely not even context-free

$2 b . L=A \cap B$, where A is context-free, non-regular, and B is regular and of infinite cardinality

L can be characterized by Property (ii), above.
L can be regular: $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}, B=a^{*}, L=A \cap B=\{\lambda\}$.
L cab be context-free: $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}, B=a^{*} b^{*}, L=A \cap B=\left\{a^{n} b^{n} \mid n \geq 0\right\}$.
L cannot be a non-CFL as CFLs are closed under intersection with Regular

2a. $L=\sim(A \cap B)$, where A is context-free, non-regular, and B is regular and of infinite cardinality

L can be characterized by Property (iv), above.
L can be regular: $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}, B=a^{*}, L=\sim(A \cap B)=\{a, b\}^{*}-\{\lambda\}=\{a, b\}^{+}$.
L can be a CFL: $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}, B=a^{*} b^{*} L=\sim(A \cap B)=\Sigma^{*}-\left\{a^{n} b^{n} \mid n \geq 0\right\}$
$=\left\{a^{n} b^{m} \mid n \neq m\right\} \cup\left\{\{a, b\}^{*}\right.$ ba $\left.\{a, b\}^{*}\right\} / /$ latter part is regular
L can be non-context-free: $A=\left\{w x\left|w, x \in\{a, b\}^{*},|w|=|x|, w \neq x\right\}, B=a^{*} b^{*}\right.$, $A \cap B=A$ and $\sim A=\left\{w w \mid w \in\{a, b\}^{*}\right\} \cup\left\{x \mid x \in\{a, b\}^{+}\right.$and has odd length $\}$

2c. $A \subset L$, where A is Regular

L can be characterized by Property (iv), above.
L can be regular: $A=\varnothing^{*}, L=a^{*}$.
L can be context-free: $A=\varnothing, L=\left\{a^{n} b^{n} . \mid n \geq 0\right\}$
L can be non-context-free: $A=\varnothing, L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.

An even easier explanation is, if $A=\varnothing, A \subset L$ then L can be any set as all sets have \varnothing as a subset. Even if L is over the simple alphabet \{a\}, that has an uncountable number of subsets. Thus, L can be absolutely anything, including non-re ones.
3. Show that prfs are closed under sum mutual induction. Sum Mutual Induction means that each induction step, say at $y+1$, after calculating the base is computed using the sum of the values of the other function up to the y-th value. The formal hypothesis is:

Assume $\mathbf{g 1}, \mathbf{g} \mathbf{2}, \mathbf{h 1}$ and $\mathbf{h 2}$ are already known to be prf, then so are $\mathbf{f 1}$ and $\mathbf{f 2}$, where

$$
\begin{aligned}
& f 1(x, 0)=g 1(x) ; f 2(x, 0)=g 2(x) \\
& f 1(x, y+1)=h 1(\operatorname{sum}(i=0 \text { to } y) f 2(x, i)) ; f 2(x, y+1)=h 2(\operatorname{sum}(i=0 \text { to } y) f 1(x, i))
\end{aligned}
$$

3. Show that prfs are closed under sum mutual induction. Sum Mutual Induction means that each induction step, say at $y+1$, after calculating the base is computed using the sum of the values of the other function up to the y-th value. The formal hypothesis is:

$$
\begin{aligned}
& K(x, 0)=\langle g 1(x), g 1(x), g 2(x), g 2(x)\rangle \\
& K(x, y+1)=\quad<h 1\left(\left\langle K(x, y)>_{4}\right),+\left(\left\langle K(x, y)>_{2}, h 1\left(\langle K(x, y)\rangle_{4}\right)\right),\right.\right. \\
& \quad h 2\left(\left\langle K(x, y)>_{2}\right),+\left(\left\langle K(x, y)>_{4}, h 2\left(\left\langle K(x, y)>_{2}\right)\right)\right\rangle\right.\right.
\end{aligned}
$$

$f 1(x, y)=\left\langle K(x, y)>_{1} / /\right.$ extract first value from quad encoded in $K(x, y)$
$f 2(x, y)=<K(x, y)>_{3} / /$ extract third value from quad encoded in $K(x, y)$
Why this works
$\langle K(x, y)\rangle_{1}$ is $\left.f 1(x, y),<K(x, y)\right\rangle_{2}$ is sum of $f 1$ values including $f 1(x, y)$ $\langle K(x, y)\rangle_{3}$ is $f 2(x, y),\langle K(x, y)\rangle_{4}$ is sum of $f 2$ values including $f 2(x, y)$

