
Assignment#2 Key



1a. ProperSuffix(L) = { y | w is in L, x is not lambda and w = xy }

• Let L be a Regular language over the finite alphabet Σ. For each a∈Σ, define 
f(a) = {a,a’}, g(a) = a’ and h(a) = a, h(a’) = λ, 
f is a substitution, g and h are homomorphisms.
ProperSuffix(L) = h(f(L) ∩ (g(Σ+) Σ*))
• Why this works: 

f(L) gets us every possible random priming of letters of strings in L.
g(Σ+) Σ* gets every word that starts with at least one letter primed and 
ends in a sequence (possibly null) of unprimed letters. Intersecting this 
with f(L) gets strings in L with non-null prefixes primed and the rest(the
proper suffix) unprimed. 
Applying the homomorphism h erases all primed letters getting proper 
suffixes. This works as Regular Languages are closed under intersection, 
concatenation, *, +, substitution, and homomorphism.
• Can also create an NFA from DFA for L, but that’s too much work.



1b. SomeHalf(L) = { y | there exists a string x , |x| = |y| and 
either xy is in L or yx is in L }
Proof. Want to show that if L is regular, SomeHalf(L) is also regular.

Let A1 = (Q, Σ, δ, q0, F).

The NFA has a 5-tuple of state sets where the first element is the state on the first half, the second is 
the union of states on the guessed second half, the third is the union of states on the guessed first 
half, the fourth is the state on the second half, and the fifth is the guessed state at the midpoint. 
The start state is <q0, h, q0, h, h> and the accepting states are <h,f,h,f',h> where either f or f’ is a 
final state. 
Let A2 = (Qʹ, Σ, δʹ, qʹ0, Fʹ) where:Qʹ = (Q × 2Q × 2Q × 2Q × 2Q ) ∪ {qʹ0}

δʹ(qʹ0, λ) = union(h ∈ Q){< q0, h, q0, h , h >}

δʹ(< q, r, s, t, h>, a) =union(b ∈ Σ){< δ(q, a), δ(r, b), δ(s, b), δ(t, a), h >}, q, r, s, t ∈ Q
Fʹ = {< h, f, s, t, h>} ∪ {< q, r, h, f, h>} h,q,r,s,t ∈ Q, f ∈ F, 

union(h ∈ Q) δʹ*(< q0, h, q0, h , h >, x) contains <δ*(q0,x), δ*(h,y), δ*(q0,y), δ*(h,x), h> 
where |x|= |y|,  xy ∈ L or yx ∈ L

Thus, regular expressions are closed under SomeHalf



2. Use Regular Equations to Solve for B

A = λ
B = Aa + Ca = a + Ca = a + B(ba)* a = a((ba)* a)*
C = B + Da = B + (Cb) a = B(ba)*
D = Cb

L = B = a((ba)* a)*



3. L = { am bn ct | t = m % n  }

a.) Use the Pumping Lemma for Regular Languages to show L is 
not Regular.
Assume L is Regular
Let N>0 be value provided by PL
Choose aN bN c0 as a string in L
PL splits aN bN c0 into xyz such that |xy|≤ N and |y| > 0. ∀i ≥0, xyiz ∈L

y is strictly over a’s. Set i=0 and we get aN-|y| bN but then the there are no 
c’s that should exist following so the resulting string is not in L.
So L is not Regular based on the PL.



3.L = { am bn ct | t = m % n  }

b.) Use the Myhill-Nerode Theorem to show L is not Regular.
Define the equivalence classes [aibi+1], i ≥ 0
Clearly aibi+1 ci is in L, but ajbj+1 ci is not in L when j ≠ i, i, j>0
Thus, [aibi+1] ≠ [ajbj+1] when j ≠ i, i, j>0 and so the index of RL is infinite.
By Myhill-Nerode, L is not Regular.


