Assignment\#3 Sample Key

1. Consider $L=\left\{a^{m} b^{n} c^{t} \mid t=\min (m, n)\right\}$

a.) Use the Pumping Lemma for CFLs to show L is not a CFL Me : L is a CFL
PL: Provides $\mathbf{N}>\mathbf{0}$
$\mathrm{Me}: \mathbf{z}=\mathbf{a}^{\mathbf{N}} \mathbf{b}^{\mathbf{N}} \mathbf{c}^{\mathbf{N}}$
PL: z = uvwxy, $|\mathbf{v w x}| \leq N,|v x|>0$, and $\forall i \geq 0 u v^{i} w x^{i} y \in L$
Me: Since $|\mathbf{v w x}| \leq \mathbf{N}$, it can consist of a's and/or b's or b's and/or c's but never all three.
Assume it contains no c's then $\mathbf{i = 0}$ decreases the number of a's and/or the number of b's, but not the c's and so there are more c's than the minimum of a's and b's.
Assume it contains c's then $\mathbf{i = 2}$ increases the number of c's and maybe number of \mathbf{b} 's, but not the \mathbf{a} 's and so there are more than $\mathbf{N} \mathbf{~ c ' s ~ b u t ~ j u s t ~} \mathbf{N}$ a's.

1. Consider $L=\left\{a^{m} b^{n} c^{t} \mid t=\min (m, n)\right\}$

b.) Present a CSG for \mathbf{L} to show it is context sensitive $G=(\{A, B, C,<a>,\},\{a, b, c\}, R, A)$
$\mathrm{A} \rightarrow \mathrm{aBbc}|\mathrm{abc}| \mathrm{a}|\mathrm{b}| \lambda$
$\mathrm{B} \rightarrow \mathrm{aBbC}|\mathrm{abC}| \quad / /$ match a's, b's and c's $a<a>b C \mid a bC \quad / / ~ a l l o w ~ m o r e ~ a ' s ~ o r ~ b ' s ~$
$\mathrm{Cb} \rightarrow \mathrm{bC} \quad / /$ Shuttle C over to a c
$\mathrm{Cc} \rightarrow \mathrm{cc} \quad / /$ Change C to a c
$<a>\rightarrow a<a>\mid a$
$\rightarrow b\mid b$

2. Language Closure under Various Operation

Consider some language \mathbf{L}. For each of the following cases, write in one of (i) through (vi), to indicate what you can say conclusively about L's complexity, where

(i)	L is definitely regular
(ii)	Lis context-free, possibly not regular, but then again it might be regular (iii) (is context-free, and definitely not regular
iv)	is might not even be context-free, but then again it might even be regular
(v)	Lis definitely not regular, and it may or may not be context-free
(vi)	Lis iefinitely not even context-free

Follow each answer with example languages \mathbf{A} (and \mathbf{B}, where appropriate) to back up the complexity claims inherent in your answer; and/or state some known closure property that reflects a bound on the complexity of \mathbf{L}.
Example.) $\mathbf{L}=\mathbf{A} \cup \mathbf{B}$, where \mathbf{A} and \mathbf{B} are both context free, and definitely not regular
L can be characterized by Property (ii), above.
L is context-free, since the class of context-free languages is closed under union.
L can be regular. For example,
$A=\left\{a^{n} b^{m} \mid m \geq n\right\}, B=\left\{a^{n} b^{m} \mid m \leq n\right\}$,
$\mathbf{L}=\mathbf{A} \cup \mathbf{B}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} \mid \mathbf{n}, \mathbf{m} \geq \mathbf{0}\right\}$, which is regular since it can be represented by the regular expression $\mathbf{a}^{*} \mathbf{b}^{*}$.
But \mathbf{L} is in general not guaranteed to be regular, e.g., if we just make \mathbf{A} and \mathbf{B} the same context-free, non-regular set, then $\mathbf{L}=$
$\mathbf{A} \cup \mathbf{A}=\mathbf{A}$, which is not regular.

2. Language Closure under Various Operation

a.) $\mathbf{L}=\mathbf{A} \cap \mathbf{B}$, where \mathbf{A} and \mathbf{B} are both context-free, non-regular (iv)

Regular:

$$
\begin{aligned}
& A=a^{n} b^{n}, B=c^{n} d^{n}, L=\varnothing \\
& A=a^{n} b^{n}, B=a^{n} b^{n}, L=a^{n} b^{n}
\end{aligned}
$$

Context-Free:
Non-Context-Free: $\quad A=a^{n} b^{n} \mathbf{c}^{*}, B=a^{*} b^{n} \mathbf{c}^{n}, L=a^{n} b^{n} \mathbf{c}^{n}$
b.) $\mathbf{L}=\mathbf{A} \cap \mathbf{B}$, where \mathbf{A} is context-free, non-regular and \mathbf{B} is regular
(ii)

Regular:
$A=a^{n} b^{n}, B=\varnothing, L=\varnothing$
Context-Free:
$A=a^{n} b^{n}, B=a^{*} b^{*}, L=a^{n} b^{n}$
Non-Context-Free: regular

3. Show prfs are closed under Fibonacci induction

Fibonacci induction means that each induction step after calculating the base is computed using the previous two values. Here, $f(0, x)=$ some base value;
$f(1, x)$ is based on $f(0, x)$ and 0 (an invented value for two steps back); and for $y>1, f(y, x)$ is based on $f(y-1, x)$ and $f(y-2, x)$.

The formal hypothesis is:
Assume g and h are already known to be prf, then so is f, where $f(0, x)=g(x) ;$
$f(1, x)=h(f(0, x), 0)$; and
$f(y+2, x)=h(f(y+1, x), f(y, x))$

Proof is by construction

Fibonacci Recursion

Let K be the following primitive recursive function, defined by induction on the primitive recursive functions, g, h, and the pairing function.
$K(0, x)=B(x)$
$B(x)=\left\langle g(x), C_{0}(x)\right\rangle \quad / /$ this is just $\langle g(x), 0\rangle$
$K(y+1, x)=J(y, x, K(y, x))$
$\mathrm{J}(\mathrm{y}, \mathrm{x}, \mathrm{z})=\left\langle\mathrm{h}\left(\langle\mathrm{z}\rangle_{1},\langle\mathrm{z}\rangle_{2}\right),\langle\mathrm{z}\rangle_{1}\right\rangle$
// this is $\langle f(y+1, x), f(y, x)\rangle$, even though f is not yet shown to be prf!!
This shows K is prf.
f is then defined from K as follows:
$f(y, x)=\langle K(y, x)\rangle_{1} \quad / /$ extract first value from pair encoded in $K(y, x)$
This shows it is also a prf, as was desired.

Fibonacci Recursion (simpler form)

Let K be the following primitive recursive function, defined by induction on the primitive recursive functions, g, h, and the pairing function.
$K(0, x)=\langle g(x), 0\rangle$
// this is pair $\langle f(0, x), 0>$
$\left.K(y+1, x)=\left\langle h\left(\langle K(y, x)\rangle_{1},\langle K(y, x)\rangle_{2}\right),\langle K(y, x)\rangle_{1}\right)\right\rangle$ // this is pair < $f(y+1, x), f(y, x)>$,

This shows K is prf.
f is then defined from K as follows:
$f(y, x)=\langle K(y, x)\rangle_{1} \quad / /$ extract first value from pair encoded in $K(y, x)$ This shows it is also a prf, as was desired.

